Wood James G, Goeyvaerts Nele, MacIntyre C Raina, Menzies Robert I, McIntyre Peter B, Hens Niel
From the aSchool of Public Health and Community Medicine, UNSW, Sydney, Australia; bInteruniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium; cCentre for Health Economics Research and Modeling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium; dNational Centre for Immunisation Research & Surveillance, Sydney, Australia; and eDiscipline of Paediatrics and School of Public Health, University of Sydney, Sydney, Australia.
Epidemiology. 2015 May;26(3):381-9. doi: 10.1097/EDE.0000000000000278.
Vaccine coverage data are typically collected through vaccine registers and retrospective surveys. Alternatively, cross-sectional serosurveys enable direct estimation of vaccine coverage from antibody prevalence by exploiting correlated seropositivity for multi-antigen vaccines. Here, we extend previous methods by accounting for temporal antibody decline in estimating vaccine coverage for measles-mumps-rubella vaccine using serial serosurvey data.
We introduce a Markovian cohort model of antibody waning and boosting applied to dichotomous seropositivity data for measles, mumps, and rubella. Simulation studies are used to test model identifiability and to explore bias induced by previous methods that ignore waning. The cohort model is then fitted to three Australian serosurveys, entailing estimates of vaccine coverage from routine and catch-up vaccination as well as waning rates for each antigen.
The simulation results show that the cohort model is identifiable and qualitatively captures the decline in seropositivity observed in older children. When fitted to all three Australian surveys, the estimated seroconversion and waning parameters are similar to estimates based on recent meta-analyses, whereas the coverage estimates appear consistent with previous Australian survey-based estimates.
We show that previous methods of estimating coverage from serological data can be improved by fitting a cohort model with waning and boosting processes to serial serosurvey data, furthermore yielding estimates of more parameters of interest such as rates of waning. In settings where serial serosurvey data is available, our method could be duplicated or applied to related questions such as coverage in routine two-dose schedules or from other combination vaccines.
疫苗接种覆盖率数据通常通过疫苗登记册和回顾性调查收集。另外,横断面血清学调查通过利用多抗原疫苗的血清阳性相关性,能够直接从抗体流行率估计疫苗接种覆盖率。在此,我们通过使用系列血清学调查数据,在估计麻疹-腮腺炎-风疹疫苗接种覆盖率时考虑了抗体随时间的下降情况,从而扩展了先前的方法。
我们引入了一个抗体衰减和增强的马尔可夫队列模型,应用于麻疹、腮腺炎和风疹的二分血清阳性数据。模拟研究用于测试模型的可识别性,并探讨忽略衰减的先前方法所导致的偏差。然后将该队列模型应用于三项澳大利亚血清学调查,以估计常规和补种疫苗的接种覆盖率以及每种抗原的衰减率。
模拟结果表明,该队列模型是可识别的,并且定性地捕捉到了大龄儿童中观察到的血清阳性率下降情况。当应用于所有三项澳大利亚调查时,估计的血清转化和衰减参数与基于近期荟萃分析的估计值相似,而接种覆盖率估计值与先前基于澳大利亚调查的估计值一致。
我们表明,通过将具有衰减和增强过程的队列模型应用于系列血清学调查数据,可以改进从血清学数据估计接种覆盖率的先前方法,此外还能得出更多感兴趣参数的估计值,如衰减率。在有系列血清学调查数据的情况下,我们的方法可以被复制或应用于相关问题,如常规两剂接种方案的覆盖率或其他联合疫苗的覆盖率问题。