Wang Yingjun, Stessman Dan J, Spalding Martin H
Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA.
Plant J. 2015 May;82(3):429-448. doi: 10.1111/tpj.12829.
The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.
二氧化碳浓缩机制(CCM)是一种有效的碳获取策略,当二氧化碳浓度限制光合作用时,它能使微藻生存和增殖。CCM通过提高核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)位点的二氧化碳浓度来改善光合性能,同时增强碳固定并抑制光呼吸。主动无机碳(Ci)摄取、Rubisco隔离以及碳酸酐酶(CAs)催化的不同Ci物种之间的相互转化是CCM的关键组成部分,并且存在一系列分子调控元件,以促进对二氧化碳可用性的感知、调节CCM的表达,并在二氧化碳受限条件下协调光合碳代谢与其他代谢过程之间的相互作用。本综述旨在整合我们目前对真核藻类CCM及其与碳同化相互作用的理解,主要以衣藻为模型,并说明衣藻如何适应二氧化碳限制条件以及其CCM如何被调控。