Chevalier Thibaud, Talon Laurent
Université Paris-Sud, CNRS, Laboratoire FAST, UMR 7608, Orsay F-91405, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023011. doi: 10.1103/PhysRevE.91.023011. Epub 2015 Feb 13.
In this paper, we numerically investigate the statistical properties of the nonflowing areas of Bingham fluid in two-dimensional porous media. First, we demonstrate that the size probability distribution of the unyielded clusters follows a power-law decay with a large size cutoff. This cutoff is shown to diverge following a power law as the imposed pressure drop tends to a critical value. In addition, we observe that the exponents are almost identical for two different types of porous media. Finally, those scaling properties allow us to account for the quadratic relationship between the pressure gradient and velocity.
在本文中,我们对二维多孔介质中宾汉流体非流动区域的统计特性进行了数值研究。首先,我们证明了未屈服团簇的尺寸概率分布遵循幂律衰减,且存在一个大尺寸截断。当施加的压降趋于临界值时,这个截断呈现出幂律发散。此外,我们观察到对于两种不同类型的多孔介质,指数几乎相同。最后,这些标度性质使我们能够解释压力梯度与速度之间的二次关系。