Pietrucci Fabio, Martoňák Roman
Sorbonne Universités, UPMC University Paris 6, UMR 7590, IMPMC, F-75005 Paris, France.
Department of Experimental Physics, Comenius University, Mlynská Dolina F2, 842 48 Bratislava, Slovakia.
J Chem Phys. 2015 Mar 14;142(10):104704. doi: 10.1063/1.4914138.
Systematically resolving different crystalline phases starting from the atomic positions, a mandatory step in algorithms for the prediction of structures or for the simulation of phase transitions, can be a non-trivial task. Extending to amorphous phases and liquids which lack the discrete symmetries, the problem becomes even more difficult, involving subtle topological differences at medium range that, however, are crucial to the physico-chemical and spectroscopic properties of the corresponding materials. Typically, system-tailored order parameters are devised, like global or local symmetry indicators, ring populations, etc. We show that a recently introduced metric provides a simple and general solution to this intricate problem. In particular, we demonstrate that a map can be traced displaying distances among water phases, including crystalline as well as amorphous states and the liquid, consistently with experimental knowledge in terms of phase diagram, structural features, and preparation routes.
从原子位置开始系统地解析不同的晶相,这是结构预测算法或相变模拟算法中的一个必要步骤,可能是一项不平凡的任务。扩展到缺乏离散对称性的非晶相和液体时,问题变得更加困难,这涉及到中程范围内微妙的拓扑差异,然而这些差异对于相应材料的物理化学和光谱性质至关重要。通常会设计针对系统的序参量,如全局或局部对称性指标、环占有率等。我们表明,最近引入的一种度量为这个复杂问题提供了一个简单而通用的解决方案。特别是,我们证明可以绘制出一张图,显示水的不同相之间的距离,包括晶态、非晶态以及液态,这与相图、结构特征和制备途径方面的实验知识是一致的。