Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta A M, Pietrucci F
Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7590, IRD UMR 206, MNHN, IMPMC, F-75005 Paris, France.
Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris, France.
Phys Rev Lett. 2017 Dec 15;119(24):245701. doi: 10.1103/PhysRevLett.119.245701. Epub 2017 Dec 14.
Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.
尽管水的分子单元很简单,但由于其独特的丰富多态性以及预测但尚未得到证实的特性,它是一个具有挑战性的系统。引入一种新的广义坐标空间来捕捉原子间网络拓扑结构的变化,我们能够在水的整个相图中系统地跟踪液体、非晶态和晶态形式之间的转变,包括熔点以上和以下晶体的成核。我们基于分子动力学以及增强采样或自由能计算技术的方法并不局限于水,可应用于非常不同的结构相变,为预测一系列材料中连接多晶型结构的动力学途径铺平了道路。