van der Steen M C Marieke, Schwartze Michael, Kotz Sonja A, Keller Peter E
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Ann N Y Acad Sci. 2015 Mar;1337:101-10. doi: 10.1111/nyas.12628.
This study addressed the role of subcortical brain structures in temporal adaptation and anticipation during sensorimotor synchronization. The performance of patients with cerebellar or basal ganglia lesions was compared with that of healthy control participants on tasks requiring the synchronization of drum strokes with adaptive and tempo-changing auditory pacing sequences. The precision of sensorimotor synchronization was generally lower in patients relative to controls (i.e., variability of asynchronies was higher in patients), although synchronization accuracy (mean asynchrony) was commensurate. A computational model of adaptation and anticipation (ADAM) was used to examine potential sources of individual differences in precision by estimating participants' use of error correction, temporal prediction, and the amount of variability associated with central timekeeping and peripheral motor processes. Parameter estimates based on ADAM indicate that impaired precision was attributable to increased variability of timekeeper and motor processes as well as to reduced temporal prediction in both patient groups. Adaptive processes related to continuously applied error correction were, by contrast, intact in patients. These findings highlight the importance of investigating how subcortical structures, including the cerebellum and basal ganglia, interact with a broader network of cortical regions to support temporal adaptation and anticipation during sensorimotor synchronization.
本研究探讨了皮质下脑结构在感觉运动同步过程中的时间适应和预期中的作用。在要求将鼓点与适应性和节奏变化的听觉起搏序列同步的任务中,比较了小脑或基底神经节病变患者与健康对照参与者的表现。相对于对照组,患者的感觉运动同步精度通常较低(即患者的异步变异性较高),尽管同步准确性(平均异步性)相当。使用适应和预期计算模型(ADAM)通过估计参与者对误差校正、时间预测以及与中央计时和外周运动过程相关的变异性量的使用情况,来检查精度个体差异的潜在来源。基于ADAM的参数估计表明,精度受损归因于计时员和运动过程变异性的增加以及两组患者时间预测的减少。相比之下,与持续应用误差校正相关的适应过程在患者中是完整的。这些发现凸显了研究包括小脑和基底神经节在内的皮质下结构如何与更广泛的皮质区域网络相互作用,以支持感觉运动同步过程中的时间适应和预期的重要性。