Bonet-Ponce Luis, Saez-Atienzar Sara, da Casa Carmen, Flores-Bellver Miguel, Barcia Jorge M, Sancho-Pelluz Javier, Romero Francisco J, Jordan Joaquín, Galindo María F
Grupo de Neurofarmacología, Dpto. Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha. IDINE, Albacete, Spain; Facultad de Medicina y Odontología, Universidad Católica de Valencia ¨San Vicente Mártir¨, Valencia, Spain.
Grupo de Neurofarmacología, Dpto. Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha. IDINE, Albacete, Spain.
Biochim Biophys Acta. 2015 Jul;1852(7):1400-9. doi: 10.1016/j.bbadis.2015.03.006. Epub 2015 Mar 13.
We have explored the mechanisms underlying ethanol-induced mitochondrial dynamics disruption and mitophagy. Ethanol increases mitochondrial fission in a concentration-dependent manner through Drp1 mitochondrial translocation and OPA1 proteolytic cleavage. ARPE-19 (a human retinal pigment epithelial cell line) cells challenged with ethanol showed mitochondrial potential disruptions mediated by alterations in mitochondrial complex IV protein level and increases in mitochondrial reactive oxygen species production. In addition, ethanol activated the canonical autophagic pathway, as denoted by autophagosome formation and autophagy regulator elements including Beclin1, ATG5-ATG12 and P-S6 kinase. Likewise, autophagy inhibition dramatically increased mitochondrial fission and cell death, whereas autophagy stimulation rendered the opposite results, placing autophagy as a cytoprotective response aimed to remove damaged mitochondria. Interestingly, although ethanol induced mitochondrial Bax translocation, this episode was associated to cell death rather than mitochondrial fission or autophagy responses. Thus, Bax required 600 mM ethanol to migrate to mitochondria, a concentration that resulted in cell death. Furthermore, mouse embryonic fibroblasts lacking this protein respond to ethanol by undergoing mitochondrial fission and autophagy but not cytotoxicity. Finally, by using the specific mitochondrial-targeted scavenger MitoQ, we revealed mitochondria as the main source of reactive oxygen species that trigger autophagy activation. These findings suggest that cells respond to ethanol activating mitochondrial fission machinery by Drp1 and OPA1 rather than bax, in a manner that stimulates cytoprotective autophagy through mitochondrial ROS.
我们探究了乙醇诱导的线粒体动力学破坏和线粒体自噬的潜在机制。乙醇通过动力相关蛋白1(Drp1)的线粒体易位和视神经萎缩蛋白1(OPA1)的蛋白水解切割,以浓度依赖的方式增加线粒体分裂。用乙醇处理的人视网膜色素上皮细胞系(ARPE - 19)细胞显示,线粒体复合物IV蛋白水平的改变介导了线粒体电位破坏,并且线粒体活性氧生成增加。此外,乙醇激活了经典自噬途径,表现为自噬体形成以及包括Beclin1、自噬相关蛋白5 - 自噬相关蛋白12(ATG5 - ATG12)和磷酸化核糖体蛋白S6激酶(P - S6激酶)在内的自噬调节因子的出现。同样,自噬抑制显著增加线粒体分裂和细胞死亡,而自噬刺激则产生相反的结果,表明自噬是一种旨在清除受损线粒体的细胞保护反应。有趣的是,尽管乙醇诱导了线粒体促凋亡蛋白Bax的易位,但这一过程与细胞死亡相关,而非线粒体分裂或自噬反应。因此,Bax需要600 mM乙醇才能迁移到线粒体,而这个浓度会导致细胞死亡。此外,缺乏该蛋白的小鼠胚胎成纤维细胞对乙醇的反应是发生线粒体分裂和自噬,但没有细胞毒性。最后,通过使用特异性线粒体靶向清除剂MitoQ,我们揭示线粒体是触发自噬激活的活性氧的主要来源。这些发现表明,细胞通过Drp1和OPA1激活线粒体分裂机制来响应乙醇,而不是通过Bax,其方式是通过线粒体活性氧刺激细胞保护自噬。