Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA.
Dept of Public Health Sciences, Medical University of South Carolina, 135 Cannon St., Charleston, SC, 29425, USA.
Biochem Biophys Res Commun. 2024 Nov 19;734:150735. doi: 10.1016/j.bbrc.2024.150735. Epub 2024 Sep 24.
Chronic alcohol (ethanol) use is increasing in the United States and has been linked to numerous health issues in multiple organ systems including neurological dysfunction and diseases. Ethanol toxicity is mainly driven by the metabolite acetaldehyde, which is generated through three pathways: alcohol dehydrogenase (ADH2), catalase (CAT), and cytochrome P450 2E1 (CYP2E1). ADH2, while the main ethanol clearance pathway in the liver, is not expressed in the mammalian brain, resulting in CAT and CYP2E1 driving local metabolism of ethanol in the central nervous system. CYP2E1 is known to generate reactive metabolites and reactive oxygen species and localizes to the mitochondria (mtCYP2E1) and endoplasmic reticulum (erCYP2E1). We sought to understand the consequences of mtCYP2E1 and erCYP2E1 in the nervous system during acute ethanol exposure. To answer this question, we generated transgenic Caenorhabditis elegans roundworms expressing human CYP2E1 in the mitochondria, endoplasmic reticulum, or both and exposed them to ethanol. We found that at lower concentrations, wild-type and mtCYP2E1-expressing worms had a small but significant inhibition of locomotion, whereas the erCYP2E1-expressing worms showed protection from this inhibition. At higher doses, all strains had reduced locomotion, but the erCYP2E1-expressing worms recovered faster than wild-type controls. CYP2E1 expression, regardless of organellar targeting, reduced mitochondrial respiration in response to ethanol. Similarly, transgenic expression of CYP2E1 in either organelle in PC-12 rat neuronal cell lines sensitized them to ethanol-induced cell death. Together, these findings suggest that subcellular localization of CYP2E1 impacts behavioral effects of ethanol and should be further studied in the mammalian central nervous system.
慢性酒精(乙醇)的使用在美国不断增加,与包括神经功能障碍和疾病在内的多个器官系统的许多健康问题有关。乙醇毒性主要由代谢物乙醛驱动,乙醛通过三种途径产生:乙醇脱氢酶(ADH2)、过氧化氢酶(CAT)和细胞色素 P450 2E1(CYP2E1)。ADH2 虽然是肝脏中主要的乙醇清除途径,但在哺乳动物大脑中不表达,导致 CAT 和 CYP2E1 驱动中枢神经系统中乙醇的局部代谢。已知 CYP2E1 会产生反应性代谢物和活性氧,并定位于线粒体(mtCYP2E1)和内质网(erCYP2E1)。我们试图了解急性乙醇暴露时 mtCYP2E1 和 erCYP2E1 在神经系统中的后果。为了回答这个问题,我们生成了表达人 CYP2E1 的转基因秀丽隐杆线虫,该蛋白在线粒体、内质网或两者中表达,并将其暴露于乙醇中。我们发现,在较低浓度下,野生型和 mtCYP2E1 表达的线虫的运动有轻微但显著的抑制,而 erCYP2E1 表达的线虫则对此抑制有保护作用。在较高剂量下,所有菌株的运动都减少了,但 erCYP2E1 表达的线虫比野生型对照恢复得更快。CYP2E1 的表达,无论其是否靶向细胞器,都会使线粒体呼吸对乙醇产生反应。同样,在 PC-12 大鼠神经元细胞系中,CYP2E1 在任一种细胞器中的转基因表达都会使它们对乙醇诱导的细胞死亡敏感。总之,这些发现表明 CYP2E1 的亚细胞定位会影响乙醇的行为效应,应该在哺乳动物中枢神经系统中进一步研究。