Suppr超能文献

用于闪存的基于氧化锌/氧化镍二极管的电荷俘获层,具有低电压操作特性。

ZnO/NiO diode-based charge-trapping layer for flash memory featuring low-voltage operation.

作者信息

Sun Chergn-En, Chen Chin-Yu, Chu Ka-Lip, Shen Yung-Shao, Lin Chia-Chun, Wu Yung-Hsien

机构信息

Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6383-90. doi: 10.1021/am507535c. Epub 2015 Mar 17.

Abstract

A stacked oxide semiconductor of n-type ZnO/p-type NiO with diode behavior was proposed as the novel charge-trapping layer to enable low-voltage flash memory for green electronics. The memory performance outperforms that of other devices with high κ and a nanocrystal-based charge-trapping layer in terms of a large hysteresis memory window of 2.02 V with ±3 V program/erase voltage, a high operation speed of 1.88 V threshold voltage shift by erasing at -4 V for 1 ms, negligible memory window degradation up to 10(5) operation cycles, and 16.2% charge loss after 10 years of operation at 85 °C. The promising electrical characteristics can be explained by the negative conduction band offset with respect to Si of ZnO that is beneficial to electron injection and storage, the large number of trapping sites of NiO that act as other good storage media, and most importantly the built-in electric field between n-type ZnO and p-type NiO that provides a favorable electric field for program and erase operation. The process of diode-based flash memory is fully compatible with incumbent VLSI technology, and utilization of the built-in electric field ushers in a new avenue of accomplishing green flash memory.

摘要

一种具有二极管特性的n型ZnO/p型NiO堆叠氧化物半导体被提议作为新型电荷俘获层,以实现用于绿色电子器件的低电压闪存。在±3 V编程/擦除电压下具有2.02 V的大滞后记忆窗口、通过在-4 V下擦除1 ms实现1.88 V阈值电压偏移的高操作速度、高达10(5)个操作周期可忽略不计的记忆窗口退化以及在85°C下运行10年后16.2%的电荷损失方面,该存储器性能优于其他具有高κ和基于纳米晶体的电荷俘获层的器件。这些有前景的电学特性可以通过相对于Si的ZnO的负导带偏移(有利于电子注入和存储)、作为其他良好存储介质的NiO的大量俘获位点以及最重要的是n型ZnO和p型NiO之间的内建电场(为编程和擦除操作提供有利电场)来解释。基于二极管的闪存工艺与现有的超大规模集成电路技术完全兼容,并且内建电场的利用开创了实现绿色闪存的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验