†Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
‡Lancaster Quantum Technology Centre, Department of Physics, Lancaster University, Lancaster LA1 4YB, U.K.
J Am Chem Soc. 2015 Apr 8;137(13):4469-76. doi: 10.1021/jacs.5b00335. Epub 2015 Mar 26.
Experiments using a mechanically controlled break junction and calculations based on density functional theory demonstrate a new magic ratio rule (MRR) that captures the contribution of connectivity to the electrical conductance of graphene-like aromatic molecules. When one electrode is connected to a site i and the other is connected to a site i' of a particular molecule, we assign the molecule a "magic integer" Mii'. Two molecules with the same aromatic core but different pairs of electrode connection sites (i,i' and j,j', respectively) possess different magic integers Mii' and Mjj'. On the basis of connectivity alone, we predict that when the coupling to electrodes is weak and the Fermi energy of the electrodes lies close to the center of the HOMO-LUMO gap, the ratio of their conductances is equal to (Mii'/Mjj')(2). The MRR is exact for a tight-binding representation of a molecule and a qualitative guide for real molecules.
使用机械控制的断接 Junction 和基于密度泛函理论的计算表明,存在一个新的魔术比规则 (MRR),它捕获了连接对类似石墨烯的芳香族分子的电导的贡献。当一个电极连接到一个位置 i,另一个电极连接到一个特定分子的位置 i'时,我们将该分子分配一个“魔术整数” Mii'。两个具有相同芳香核但电极连接位置不同的分子 (i,i'和 j,j',分别) 具有不同的魔术整数 Mii'和 Mjj'。仅基于连通性,我们预测当电极的耦合较弱并且电极的费米能量接近 HOMO-LUMO 能隙的中心时,它们的电导比等于 (Mii'/Mjj')(2)。对于分子的紧束缚表示,MRR 是精确的,对于实际分子是定性指导。