Suppr超能文献

细菌中的适应性抗性需要表观遗传、遗传噪声和外排泵的成本。

Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps.

作者信息

Motta Santiago Sandoval, Cluzel Philippe, Aldana Maximino

机构信息

Instituto de Ciencias Físicas, UNAM, Cuernavaca, Morelos, Mexico.

FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2015 Mar 17;10(3):e0118464. doi: 10.1371/journal.pone.0118464. eCollection 2015.

Abstract

Adaptive resistance emerges when populations of bacteria are subjected to gradual increases of antibiotics. It is characterized by a rapid emergence of resistance and fast reversibility to the non-resistant phenotype when the antibiotic is removed from the medium. Recent work shows that adaptive resistance requires epigenetic inheritance and heterogeneity of gene expression patterns that are, in particular, associated with the production of porins and efflux pumps. However, the precise mechanisms by which inheritance and variability govern adaptive resistance, and what processes cause its reversibility remain unclear. Here, using an efflux pump regulatory network (EPRN) model, we show that the following three mechanisms are essential to obtain adaptive resistance in a bacterial population: 1) intrinsic variability in the expression of the EPRN transcription factors; 2) epigenetic inheritance of the transcription rate of EPRN associated genes; and 3) energetic cost of the efflux pumps activity that slows down cell growth. While the first two mechanisms acting together are responsible for the emergence and gradual increase of the resistance, the third one accounts for its reversibility. In contrast with the standard assumption, our model predicts that adaptive resistance cannot be explained by increased mutation rates. Our results identify the molecular mechanism of epigenetic inheritance as the main target for therapeutic treatments against the emergence of adaptive resistance. Finally, our theoretical framework unifies known and newly identified determinants such as the burden of efflux pumps that underlie bacterial adaptive resistance to antibiotics.

摘要

当细菌群体逐渐接触抗生素浓度增加的环境时,适应性耐药就会出现。其特点是耐药性迅速出现,并且当从培养基中去除抗生素后,能快速恢复到非耐药表型。最近的研究表明,适应性耐药需要表观遗传继承以及基因表达模式的异质性,特别是与孔蛋白和外排泵的产生有关。然而,遗传和变异性控制适应性耐药的确切机制,以及导致其可逆性的过程仍不清楚。在这里,我们使用一个外排泵调控网络(EPRN)模型表明,以下三种机制对于在细菌群体中获得适应性耐药至关重要:1)EPRN转录因子表达的内在变异性;2)EPRN相关基因转录速率的表观遗传继承;3)外排泵活性的能量消耗,这会减缓细胞生长。虽然前两种机制共同作用导致耐药性的出现和逐渐增加,但第三种机制解释了其可逆性。与标准假设相反,我们的模型预测适应性耐药不能用突变率增加来解释。我们的结果确定表观遗传继承的分子机制是针对适应性耐药出现的治疗的主要靶点。最后,我们的理论框架统一了已知和新发现的决定因素,如外排泵负担,这些因素是细菌对抗生素产生适应性耐药的基础。

相似文献

1
Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps.
PLoS One. 2015 Mar 17;10(3):e0118464. doi: 10.1371/journal.pone.0118464. eCollection 2015.
2
Adaptive resistance to antibiotics in bacteria: a systems biology perspective.
Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):253-67. doi: 10.1002/wsbm.1335.
3
Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.
Biochem Biophys Res Commun. 2014 Oct 17;453(2):254-67. doi: 10.1016/j.bbrc.2014.05.090. Epub 2014 May 27.
4
Efflux drug transporters at the forefront of antimicrobial resistance.
Eur Biophys J. 2017 Oct;46(7):647-653. doi: 10.1007/s00249-017-1238-2. Epub 2017 Jul 14.
5
Interpreting phenotypic antibiotic tolerance and persister cells as evolution via epigenetic inheritance.
Mol Ecol. 2016 Apr;25(8):1869-82. doi: 10.1111/mec.13603. Epub 2016 Apr 20.
6
Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance.
Clin Microbiol Rev. 2012 Oct;25(4):661-81. doi: 10.1128/CMR.00043-12.
8
Bacterial gene amplification: implications for the evolution of antibiotic resistance.
Nat Rev Microbiol. 2009 Aug;7(8):578-88. doi: 10.1038/nrmicro2174.
9
Antibiotic Resistance and Epigenetics: More to It than Meets the Eye.
Antimicrob Agents Chemother. 2020 Jan 27;64(2). doi: 10.1128/AAC.02225-19.
10
Epigenetic inheritance based evolution of antibiotic resistance in bacteria.
BMC Evol Biol. 2008 Feb 18;8:52. doi: 10.1186/1471-2148-8-52.

引用本文的文献

1
Case Report: Genetic evolution of during treatment leading to antibiotic resistance and disease relapse.
Wellcome Open Res. 2025 Jul 30;10:281. doi: 10.12688/wellcomeopenres.24138.2. eCollection 2025.
3
The Changing Landscape of Antibiotic Treatment: Reevaluating Treatment Length in the Age of New Agents.
Antibiotics (Basel). 2025 Jul 20;14(7):727. doi: 10.3390/antibiotics14070727.
4
Antimicrobial peptides: structure, functions and translational applications.
Nat Rev Microbiol. 2025 Jul 11. doi: 10.1038/s41579-025-01200-y.
6
How memory and adaptation cost shape cell phenotypic dynamics in response to fluctuating environments.
bioRxiv. 2025 May 28:2025.05.24.655868. doi: 10.1101/2025.05.24.655868.
7
Reviewing the complexities of bacterial biocide susceptibility and in vitro biocide adaptation methodologies.
NPJ Antimicrob Resist. 2025 May 13;3(1):39. doi: 10.1038/s44259-025-00108-0.
8
Epigenetic phase variation in the gut microbiome enhances bacterial adaptation.
bioRxiv. 2025 Mar 26:2025.01.11.632565. doi: 10.1101/2025.01.11.632565.
9
The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in .
Curr Res Microb Sci. 2024 Dec 9;8:100332. doi: 10.1016/j.crmicr.2024.100332. eCollection 2025.
10
Proteomic Analysis of Human Macrophages Overexpressing Angiotensin-Converting Enzyme.
Int J Mol Sci. 2024 Jun 27;25(13):7055. doi: 10.3390/ijms25137055.

本文引用的文献

1
Contribution of phenotypic heterogeneity to adaptive antibiotic resistance.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):355-60. doi: 10.1073/pnas.1316084111. Epub 2013 Dec 18.
2
Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance.
Clin Microbiol Rev. 2012 Oct;25(4):661-81. doi: 10.1128/CMR.00043-12.
3
On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10775-80. doi: 10.1073/pnas.1117716109. Epub 2012 Jun 18.
5
6
Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria.
FEMS Microbiol Rev. 2012 Mar;36(2):340-63. doi: 10.1111/j.1574-6976.2011.00290.x. Epub 2011 Jul 29.
7
Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6559-65. doi: 10.1073/pnas.1001460107. Epub 2010 Mar 8.
8
Efflux-mediated drug resistance in bacteria: an update.
Drugs. 2009 Aug 20;69(12):1555-623. doi: 10.2165/11317030-000000000-00000.
10
The evolution of reversible switches in the presence of irreversible mimics.
Evolution. 2009 Sep;63(9):2350-62. doi: 10.1111/j.1558-5646.2009.00729.x. Epub 2009 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验