School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Neuroscientist. 2015 Oct;21(5):503-18. doi: 10.1177/1073858415577083. Epub 2015 Mar 17.
Circadian clocks are endogenous time-keeping mechanisms to adaptively coordinate animal behaviors and physiology with daily environmental changes. So far many circadian studies in model organisms have identified evolutionarily conserved molecular frames of circadian clock genes in the context of transcription-translation feedback loops. The molecular clockwork drives cell-autonomously cycling gene expression with ~24-hour periodicity, which is fundamental to circadian rhythms. Light and temperature are two of the most potent external time cues to reset the circadian phase of the internal clocks, yet relatively little is known about temperature-relevant clock regulation. In this review, we describe recent findings on temperature-dependent clock mechanisms in homeothermic mammals as compared with poikilothermic Drosophila at molecular, neural, and organismal levels. We propose thermodynamic transitions in RNA secondary structures might have been potent substrates for the molecular evolution of temperature-relevant post-transcriptional mechanisms. Future works should thus validate the potential involvement of specific post-transcriptional steps in temperature-dependent plasticity of circadian clocks.
生物钟是一种内源性的时间调节机制,能够自适应地协调动物的行为和生理机能,使之与日常环境变化相适应。迄今为止,在模式生物中进行的许多生物钟研究已经在转录-翻译反馈回路的背景下确定了生物钟基因的进化保守的分子框架。分子钟驱动细胞自主循环的基因表达,其周期性约为 24 小时,这是生物钟节律的基础。光和温度是重置内部时钟的昼夜节律相位的两个最有效的外部时间线索,但关于温度相关的时钟调节,人们知之甚少。在这篇综述中,我们比较了恒温哺乳动物和变温果蝇在分子、神经和机体水平上与温度相关的时钟机制的最新发现。我们提出,RNA 二级结构中的热力学转变可能是与温度相关的转录后机制分子进化的有力底物。因此,未来的工作应该验证特定的转录后步骤在温度依赖性生物钟可塑性中的潜在作用。