Muhonen J T, Laucht A, Simmons S, Dehollain J P, Kalra R, Hudson F E, Freer S, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A
Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney, NSW 2052, Australia.
J Phys Condens Matter. 2015 Apr 22;27(15):154205. doi: 10.1088/0953-8984/27/15/154205. Epub 2015 Mar 18.
Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit.
基于对硅中单个(31)P原子的电子和核自旋的相干控制及单次读出的演示,我们在此给出了使用克利福德群中1比特门的随机基准测试对量子门保真度的系统实验估计。我们将此分析应用于同位素纯化的(28)Si中单个P施主的电子和电离的(31)P核。我们发现电子的平均门保真度为99.95%,核自旋的平均门保真度为99.99%。这些值高于某些纠错阈值,并证明了基于施主的硅量子计算的潜力。通过研究控制脉冲的形状和功率的影响,我们发现有证据表明当前对门保真度的限制主要与外部硬件有关,而非量子比特的固有行为。