Thorvaldson I, Poulos D, Moehle C M, Misha S H, Edlbauer H, Reiner J, Geng H, Voisin B, Jones M T, Donnelly M B, Peña L F, Hill C D, Myers C R, Keizer J G, Chung Y, Gorman S K, Kranz L, Simmons M Y
Silicon Quantum Computing Pty Ltd, UNSW Sydney, Sydney, New South Wales, Australia.
Centre of Excellence for Quantum Computation and Communication Technology, UNSW Sydney, Sydney, New South Wales, Australia.
Nat Nanotechnol. 2025 Apr;20(4):472-477. doi: 10.1038/s41565-024-01853-5. Epub 2025 Feb 20.
Spin qubits in silicon are strong contenders for the realization of a practical quantum computer, having demonstrated single- and two-qubit gates with fidelities above the fault-tolerant threshold, and entanglement of three qubits. However, maintaining high-fidelity operations while increasing the qubit count remains challenging and therefore only two-qubit algorithms have been executed. Here we utilize a four-qubit silicon processor with all control fidelities above the fault-tolerant threshold and demonstrate a three-qubit Grover's search algorithm with a ~95% probability of finding the marked state. Our processor is made of three phosphorus atoms precision-patterned into isotopically pure silicon, which localise one electron. The long coherence times of the qubits enable single-qubit fidelities above 99.9% for all qubits. Moreover, the efficient single-pulse multi-qubit operations enabled by the electron-nuclear hyperfine interaction facilitate controlled-Z gates between all pairs of nuclear spins with fidelities above 99% when using the electron as an ancilla. These control fidelities, combined with high-fidelity non-demolition readout of all nuclear spins, allow the creation of a three-qubit Greenberger-Horne-Zeilinger state with 96.2% fidelity. Looking ahead, coupling neighbouring nuclear spin registers, as the one shown here, via electron-electron exchange may enable larger, fault-tolerant quantum processors.
硅中的自旋量子比特是实现实用量子计算机的有力竞争者,已经展示了保真度高于容错阈值的单比特和双比特门,以及三比特纠缠。然而,在增加量子比特数量的同时保持高保真操作仍然具有挑战性,因此仅执行了双比特算法。在这里,我们使用了一个四比特硅处理器,其所有控制保真度都高于容错阈值,并展示了一种三比特格罗弗搜索算法,找到标记状态的概率约为95%。我们的处理器由三个精确图案化到同位素纯硅中的磷原子组成,这些磷原子俘获一个电子。量子比特的长相干时间使得所有量子比特的单比特保真度都高于99.9%。此外,当使用电子作为辅助时,由电子-核超精细相互作用实现的高效单脉冲多量子比特操作促进了所有核自旋对之间的受控Z门操作,保真度高于99%。这些控制保真度,再加上对所有核自旋的高保真非破坏读出,使得能够创建保真度为96.2%的三比特格林伯格-霍恩-泽林格态。展望未来,通过电子-电子交换耦合相邻的核自旋寄存器(如此处所示),可能会实现更大的容错量子处理器。