Dalsing Beth L, Truchon Alicia N, Gonzalez-Orta Enid T, Milling Annett S, Allen Caitilyn
Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
mBio. 2015 Mar 17;6(2):e02471. doi: 10.1128/mBio.02471-14.
UNLABELLED: Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3(-)), nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3(-), corresponding to R. solanacearum's optimal NO3(-) concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3(-) compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3(-) respiration directly enhanced growth, AniA-dependent NO2(-) reduction did not. NO2(-) and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3(-) acts as a TEA, but the resulting NO2(-) and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2(-) reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3(-) to respire, grow, and cause disease. Degradation of NO2(-) and NO is also important for successful infection and depends on denitrification and NO detoxification systems. IMPORTANCE: The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world's most destructive crop diseases. This pathogen's explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show that R. solanacearum rapidly depletes oxygen in host xylem but can then respire using host nitrate as a terminal electron acceptor. The microbe uses its denitrification pathway to detoxify the reactive nitrogen species nitrite (a product of nitrate respiration) and nitric oxide (a plant defense signal). Detoxification may play synergistic roles in bacterial wilt virulence by converting the host's chemical weapon into an energy source. Mutant bacterial strains lacking elements of the denitrification pathway could not grow as well as the wild type in tomato plants, and some mutants were also reduced in virulence. Our results show how a pathogen's metabolic activity can alter the host environment in ways that increase pathogen success.
未标记:基因组数据预测,除了氧气之外,细菌性植物病原菌青枯雷尔氏菌(Ralstonia solanacearum)还可以利用硝酸盐(NO3(-))、亚硝酸盐(NO2(-))、一氧化氮(NO)和一氧化二氮(N2O)作为末端电子受体(TEA)。当病原菌在木质部导管中生长时,编码无机氮还原的基因在番茄青枯病期间高度表达。直接测量发现,番茄木质部汁液中的氧气含量很低,尤其是在被青枯雷尔氏菌感染的植物中。木质部汁液中含有约25 mM的NO3(-),这与青枯雷尔氏菌在体外厌氧生长的最佳NO3(-)浓度相对应。我们通过构建缺失硝酸盐呼吸(ΔnarG)、反硝化作用(ΔaniA、ΔnorB和ΔnosZ)或NO解毒(ΔhmpX)步骤的缺失突变体,来检验青枯雷尔氏菌在致病过程中利用无机氮物种进行呼吸和生长的假设。与野生型相比,ΔnarG、ΔaniA和ΔnorB突变体在NO3(-)上生长较差,并且在厌氧条件下它们的腺苷酸能荷水平降低。虽然依赖NarG的NO3(-)呼吸直接促进了生长,但依赖AniA的NO2(-)还原却没有。NO2(-)和NO抑制培养物中的生长,它们的去除依赖于反硝化作用和NO解毒。因此,NO3(-)作为一种TEA,但产生的NO2(-)和NO可能不是。在植物体内,没有一个突变体的生长能与野生型一样好,并且缺乏AniA(NO2(-)还原酶)或HmpX(NO解毒)的菌株对番茄的毒力降低。因此,青枯雷尔氏菌利用宿主的NO3(-)进行呼吸、生长并引发疾病。NO2(-)和NO的降解对于成功感染也很重要,并且依赖于反硝化作用和NO解毒系统。 重要性:植物病原菌青枯雷尔氏菌会引发细菌性枯萎病,这是世界上最具破坏性的作物病害之一。人们对这种病原菌在植物维管束木质部中的爆发性生长了解甚少。我们使用生化和遗传方法表明,青枯雷尔氏菌会迅速耗尽宿主木质部中的氧气,但随后可以利用宿主硝酸盐作为末端电子受体进行呼吸。这种微生物利用其反硝化途径来解毒活性氮物种亚硝酸盐(硝酸盐呼吸的产物)和一氧化氮(一种植物防御信号)。解毒可能通过将宿主的化学武器转化为能量来源,在细菌性枯萎病的毒力中发挥协同作用。缺乏反硝化途径元件的突变细菌菌株在番茄植株中的生长不如野生型,并且一些突变体的毒力也降低了。我们的结果表明了病原菌的代谢活动如何以增加病原菌成功率的方式改变宿主环境。
Microbiol Spectr. 2022-4-27
Mol Plant Microbe Interact. 2020-1-9
Trends Microbiol. 2018-6-22
Mol Plant Microbe Interact. 2023-6
Front Bioeng Biotechnol. 2022-6-21
Mol Plant Pathol. 2014-5
mBio. 2014-4-15
Proc Natl Acad Sci U S A. 2013-10-21
Mol Plant Pathol. 2013-5-30
Cell Microbiol. 2013-4-3
Mol Plant Microbe Interact. 2013-3
Microbiology (Reading). 2012-4-5