文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

青枯雷尔氏菌在氧气受限的寄主木质部环境中利用无机氮代谢来实现致病、产生ATP以及解毒。

Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment.

作者信息

Dalsing Beth L, Truchon Alicia N, Gonzalez-Orta Enid T, Milling Annett S, Allen Caitilyn

机构信息

Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA

出版信息

mBio. 2015 Mar 17;6(2):e02471. doi: 10.1128/mBio.02471-14.


DOI:10.1128/mBio.02471-14
PMID:25784703
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4453514/
Abstract

UNLABELLED: Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3(-)), nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3(-), corresponding to R. solanacearum's optimal NO3(-) concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3(-) compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3(-) respiration directly enhanced growth, AniA-dependent NO2(-) reduction did not. NO2(-) and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3(-) acts as a TEA, but the resulting NO2(-) and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2(-) reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3(-) to respire, grow, and cause disease. Degradation of NO2(-) and NO is also important for successful infection and depends on denitrification and NO detoxification systems. IMPORTANCE: The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world's most destructive crop diseases. This pathogen's explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show that R. solanacearum rapidly depletes oxygen in host xylem but can then respire using host nitrate as a terminal electron acceptor. The microbe uses its denitrification pathway to detoxify the reactive nitrogen species nitrite (a product of nitrate respiration) and nitric oxide (a plant defense signal). Detoxification may play synergistic roles in bacterial wilt virulence by converting the host's chemical weapon into an energy source. Mutant bacterial strains lacking elements of the denitrification pathway could not grow as well as the wild type in tomato plants, and some mutants were also reduced in virulence. Our results show how a pathogen's metabolic activity can alter the host environment in ways that increase pathogen success.

摘要

未标记:基因组数据预测,除了氧气之外,细菌性植物病原菌青枯雷尔氏菌(Ralstonia solanacearum)还可以利用硝酸盐(NO3(-))、亚硝酸盐(NO2(-))、一氧化氮(NO)和一氧化二氮(N2O)作为末端电子受体(TEA)。当病原菌在木质部导管中生长时,编码无机氮还原的基因在番茄青枯病期间高度表达。直接测量发现,番茄木质部汁液中的氧气含量很低,尤其是在被青枯雷尔氏菌感染的植物中。木质部汁液中含有约25 mM的NO3(-),这与青枯雷尔氏菌在体外厌氧生长的最佳NO3(-)浓度相对应。我们通过构建缺失硝酸盐呼吸(ΔnarG)、反硝化作用(ΔaniA、ΔnorB和ΔnosZ)或NO解毒(ΔhmpX)步骤的缺失突变体,来检验青枯雷尔氏菌在致病过程中利用无机氮物种进行呼吸和生长的假设。与野生型相比,ΔnarG、ΔaniA和ΔnorB突变体在NO3(-)上生长较差,并且在厌氧条件下它们的腺苷酸能荷水平降低。虽然依赖NarG的NO3(-)呼吸直接促进了生长,但依赖AniA的NO2(-)还原却没有。NO2(-)和NO抑制培养物中的生长,它们的去除依赖于反硝化作用和NO解毒。因此,NO3(-)作为一种TEA,但产生的NO2(-)和NO可能不是。在植物体内,没有一个突变体的生长能与野生型一样好,并且缺乏AniA(NO2(-)还原酶)或HmpX(NO解毒)的菌株对番茄的毒力降低。因此,青枯雷尔氏菌利用宿主的NO3(-)进行呼吸、生长并引发疾病。NO2(-)和NO的降解对于成功感染也很重要,并且依赖于反硝化作用和NO解毒系统。 重要性:植物病原菌青枯雷尔氏菌会引发细菌性枯萎病,这是世界上最具破坏性的作物病害之一。人们对这种病原菌在植物维管束木质部中的爆发性生长了解甚少。我们使用生化和遗传方法表明,青枯雷尔氏菌会迅速耗尽宿主木质部中的氧气,但随后可以利用宿主硝酸盐作为末端电子受体进行呼吸。这种微生物利用其反硝化途径来解毒活性氮物种亚硝酸盐(硝酸盐呼吸的产物)和一氧化氮(一种植物防御信号)。解毒可能通过将宿主的化学武器转化为能量来源,在细菌性枯萎病的毒力中发挥协同作用。缺乏反硝化途径元件的突变细菌菌株在番茄植株中的生长不如野生型,并且一些突变体的毒力也降低了。我们的结果表明了病原菌的代谢活动如何以增加病原菌成功率的方式改变宿主环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/e74dfe210841/mbo0021522240008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/be4bda54e880/mbo0021522240001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/715f1118b622/mbo0021522240002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/8503774a7d91/mbo0021522240003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/97082773dd19/mbo0021522240004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/b61699973b27/mbo0021522240005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/618bb110929d/mbo0021522240006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/81214323c869/mbo0021522240007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/e74dfe210841/mbo0021522240008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/be4bda54e880/mbo0021522240001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/715f1118b622/mbo0021522240002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/8503774a7d91/mbo0021522240003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/97082773dd19/mbo0021522240004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/b61699973b27/mbo0021522240005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/618bb110929d/mbo0021522240006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/81214323c869/mbo0021522240007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/4453514/e74dfe210841/mbo0021522240008.jpg

相似文献

[1]
Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment.

mBio. 2015-3-17

[2]
NorA, HmpX, and NorB Cooperate to Reduce NO Toxicity during Denitrification and Plant Pathogenesis in .

Microbiol Spectr. 2022-4-27

[3]
The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato.

mBio. 2012-8-31

[4]
Plant-Pathogenic Phylotypes Evolved Divergent Respiratory Strategies and Behaviors To Thrive in Xylem.

mBio. 2023-2-28

[5]
A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen .

mBio. 2017-9-26

[6]
Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis.

mBio. 2013-11-26

[7]
Trehalose Synthesis Contributes to Osmotic Stress Tolerance and Virulence of the Bacterial Wilt Pathogen .

Mol Plant Microbe Interact. 2020-1-9

[8]
Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease.

Environ Microbiol. 2017-12-22

[9]
How Ralstonia solanacearum Exploits and Thrives in the Flowing Plant Xylem Environment.

Trends Microbiol. 2018-6-22

[10]
Nitric Oxide Regulates the Type III Secretion System.

Mol Plant Microbe Interact. 2023-6

引用本文的文献

[1]
Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats.

PLoS Pathog. 2023-12

[2]
Combination of and Low Fertigation Input Promoted the Growth and Productivity of Chinese Cabbage and Enriched Beneficial Rhizosphere Bacteria .

Biology (Basel). 2023-8-14

[3]
Microbial communities and their roles in the Cenozoic sulfurous oil reservoirs in the Southwestern Qaidam Basin, Western China.

Sci Rep. 2023-5-17

[4]
Plant-Pathogenic Phylotypes Evolved Divergent Respiratory Strategies and Behaviors To Thrive in Xylem.

mBio. 2023-2-28

[5]
Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases.

Adv Exp Med Biol. 2023

[6]
Genome-guided comparative transcriptome analyses for identifying cross-species common virulence factors in bacterial phytopathogens.

Front Plant Sci. 2022-11-16

[7]
In through the Out Door: A Functional Virulence Factor Secretion System Is Necessary for Phage Infection in Ralstonia solanacearum.

mBio. 2022-12-20

[8]
Inoculation effect of Pseudomonas sp. TF716 on NO emissions during rhizoremediation of diesel-contaminated soil.

Sci Rep. 2022-7-29

[9]
Infection Disturbed the Microbiome Structure Throughout the Whole Tobacco Crop Niche as Well as the Nitrogen Metabolism in Soil.

Front Bioeng Biotechnol. 2022-6-21

[10]
A 16S rRNA Gene-Based Metabarcoding of Phosphate-Rich Deposits in Muierilor Cave, South-Western Carpathians.

Front Microbiol. 2022-5-19

本文引用的文献

[1]
Nitric oxide: an effective weapon of the plant or the pathogen?

Mol Plant Pathol. 2014-5

[2]
Oxygen limitation within a bacterial aggregate.

mBio. 2014-4-15

[3]
Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion.

J Biol Chem. 2014-3-19

[4]
Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence.

J Bacteriol. 2013-12-20

[5]
Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression.

Proc Natl Acad Sci U S A. 2013-10-21

[6]
Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era.

Mol Plant Pathol. 2013-5-30

[7]
Microbial quest for food in vivo: 'nutritional virulence' as an emerging paradigm.

Cell Microbiol. 2013-4-3

[8]
Nitric oxide as a mediator for defense responses.

Mol Plant Microbe Interact. 2013-3

[9]
The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato.

mBio. 2012-8-31

[10]
Legless pathogens: how bacterial physiology provides the key to understanding pathogenicity.

Microbiology (Reading). 2012-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索