文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

当氧耗尽时,希氏菌(Dinoroseobacter shibae)DFL12T 的基因调控和代谢适应过程。

Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion.

机构信息

From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.

出版信息

J Biol Chem. 2014 May 9;289(19):13219-31. doi: 10.1074/jbc.M113.545004. Epub 2014 Mar 19.


DOI:10.1074/jbc.M113.545004
PMID:24648520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4036333/
Abstract

Metabolic flexibility is the key to the ecological success of the marine Roseobacter clade bacteria. We investigated the metabolic adaptation and the underlying changes in gene expression of Dinoroseobacter shibae DFL12(T) to anoxic life by a combination of metabolome, proteome, and transcriptome analyses. Time-resolved studies during continuous oxygen depletion were performed in a chemostat using nitrate as the terminal electron acceptor. Formation of the denitrification machinery was found enhanced on the transcriptional and proteome level, indicating that D. shibae DFL12(T) established nitrate respiration to compensate for the depletion of the electron acceptor oxygen. In parallel, arginine fermentation was induced. During the transition state, growth and ATP concentration were found to be reduced, as reflected by a decrease of A578 values and viable cell counts. In parallel, the central metabolism, including gluconeogenesis, protein biosynthesis, and purine/pyrimidine synthesis was found transiently reduced in agreement with the decreased demand for cellular building blocks. Surprisingly, an accumulation of poly-3-hydroxybutanoate was observed during prolonged incubation under anoxic conditions. One possible explanation is the storage of accumulated metabolites and the regeneration of NADP(+) from NADPH during poly-3-hydroxybutanoate synthesis (NADPH sink). Although D. shibae DFL12(T) was cultivated in the dark, biosynthesis of bacteriochlorophyll was increased, possibly to prepare for additional energy generation via aerobic anoxygenic photophosphorylation. Overall, oxygen depletion led to a metabolic crisis with partly blocked pathways and the accumulation of metabolites. In response, major energy-consuming processes were reduced until the alternative respiratory denitrification machinery was operative.

摘要

代谢灵活性是海洋玫瑰杆菌成功的关键。我们通过代谢组学、蛋白质组学和转录组学分析,研究了 Dinoroseobacter shibae DFL12(T) 对缺氧生活的代谢适应和基因表达的变化。在使用硝酸盐作为末端电子受体的恒化器中进行了连续耗氧的时程研究。在转录和蛋白质组水平上发现了反硝化机制的形成增强,表明 D. shibae DFL12(T) 建立了硝酸盐呼吸来补偿电子受体氧气的消耗。同时,诱导精氨酸发酵。在过渡状态下,发现生长和 ATP 浓度降低,这反映在 A578 值和活细胞计数的降低。同时,中央代谢包括糖异生、蛋白质生物合成和嘌呤/嘧啶合成被发现短暂减少,与细胞构建块需求减少一致。令人惊讶的是,在缺氧条件下长时间孵育期间观察到聚-3-羟基丁酸的积累。一种可能的解释是积累的代谢物的储存和聚-3-羟基丁酸合成过程中从 NADPH 再生 NADP(+)(NADPH 汇)。尽管 D. shibae DFL12(T) 在黑暗中培养,但细菌叶绿素的生物合成增加,可能是为了通过好氧厌氧光磷酸化来准备额外的能量产生。总的来说,缺氧导致部分途径受阻和代谢物积累的代谢危机。作为回应,主要的能量消耗过程减少,直到替代呼吸反硝化机制起作用。

相似文献

[1]
Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion.

J Biol Chem. 2014-3-19

[2]
The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea.

ISME J. 2009-9-10

[3]
Transposon mutagenesis identified chromosomal and plasmid genes essential for adaptation of the marine bacterium Dinoroseobacter shibae to anaerobic conditions.

J Bacteriol. 2013-8-23

[4]
Fixation of CO using the ethylmalonyl-CoA pathway in the photoheterotrophic marine bacterium Dinoroseobacter shibae.

Environ Microbiol. 2017-7

[5]
FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in .

Front Microbiol. 2017-4-20

[6]
Swimming in light: a large-scale computational analysis of the metabolism of Dinoroseobacter shibae.

PLoS Comput Biol. 2013-10-3

[7]
Heme and nitric oxide binding by the transcriptional regulator DnrF from the marine bacterium increases promoter affinity.

J Biol Chem. 2017-9-15

[8]
Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade.

BMC Microbiol. 2009-9-29

[9]
Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes.

ISME J. 2011-6-9

[10]
The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae.

BMC Genomics. 2014-2-13

引用本文的文献

[1]
Structural and regulatory determinants of flagellar motility in -the archetypal flagellum of DSM 17395.

mSystems. 2025-7-8

[2]
Engineered Marine Biofilms for Ocean Environment Monitoring.

ACS Synth Biol. 2025-7-18

[3]
Structural and regulatory determinants of flagellar motility in - The archetypal flagellum of DSM 17395.

bioRxiv. 2025-3-24

[4]
Frequency of change determines effectiveness of microbial response strategies.

ISME J. 2023-11

[5]
The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome.

Pathogens. 2021-10-14

[6]
Adaptation of Dinoroseobacter shibae to oxidative stress and the specific role of RirA.

PLoS One. 2021

[7]
Interactions among Redox Regulators and the CtrA Phosphorelay in and .

Microorganisms. 2020-4-14

[8]
Genomic organization, gene expression and activity profile of denitrification enzymes.

PeerJ. 2018-9-21

[9]
Chemiosmotic Energy Conservation in : Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction.

Front Microbiol. 2018-5-9

[10]
Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern.

Microbiologyopen. 2018-2-27

本文引用的文献

[1]
Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210T and DSM 17395.

Int J Syst Evol Microbiol. 2013-11

[2]
Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade).

Environ Microbiol. 2013-10-27

[3]
Swimming in light: a large-scale computational analysis of the metabolism of Dinoroseobacter shibae.

PLoS Comput Biol. 2013-10-3

[4]
Transposon mutagenesis identified chromosomal and plasmid genes essential for adaptation of the marine bacterium Dinoroseobacter shibae to anaerobic conditions.

J Bacteriol. 2013-8-23

[5]
Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions.

PLoS One. 2013-8-13

[6]
The role of short-chain conjugated poly-(R)-3-hydroxybutyrate (cPHB) in protein folding.

Int J Mol Sci. 2013-5-23

[7]
Dynamics of amino acid utilization in Phaeobacter inhibens DSM 17395.

Proteomics. 2013-7-11

[8]
Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients.

Proteomics. 2013-7-5

[9]
Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis.

PLoS Pathog. 2011-10-6

[10]
Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability.

Appl Environ Microbiol. 2011-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索