Suppr超能文献

基于多图谱似然融合的脑磁共振图像分割:使用具有广泛解剖学和光度学特征的数据集进行测试。

Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles.

机构信息

Center for Imaging Science, Johns Hopkins University Baltimore, MD, USA.

Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger Institute Baltimore, MD, USA.

出版信息

Front Neurosci. 2015 Mar 3;9:61. doi: 10.3389/fnins.2015.00061. eCollection 2015.

Abstract

We propose a hierarchical pipeline for skull-stripping and segmentation of anatomical structures of interest from T1-weighted images of the human brain. The pipeline is constructed based on a two-level Bayesian parameter estimation algorithm called multi-atlas likelihood fusion (MALF). In MALF, estimation of the parameter of interest is performed via maximum a posteriori estimation using the expectation-maximization (EM) algorithm. The likelihoods of multiple atlases are fused in the E-step while the optimal estimator, a single maximizer of the fused likelihoods, is then obtained in the M-step. There are two stages in the proposed pipeline; first the input T1-weighted image is automatically skull-stripped via a fast MALF, then internal brain structures of interest are automatically extracted using a regular MALF. We assess the performance of each of the two modules in the pipeline based on two sets of images with markedly different anatomical and photometric contrasts; 3T MPRAGE scans of pediatric subjects with developmental disorders vs. 1.5T SPGR scans of elderly subjects with dementia. Evaluation is performed quantitatively using the Dice overlap as well as qualitatively via visual inspections. As a result, we demonstrate subject-level differences in the performance of the proposed pipeline, which may be accounted for by age, diagnosis, or the imaging parameters (particularly the field strength). For the subcortical and ventricular structures of the two datasets, the hierarchical pipeline is capable of producing automated segmentations with Dice overlaps ranging from 0.8 to 0.964 when compared with the gold standard. Comparisons with other representative segmentation algorithms are presented, relative to which the proposed hierarchical pipeline demonstrates comparative or superior accuracy.

摘要

我们提出了一种用于从人类大脑的 T1 加权图像中剥离颅骨并分割感兴趣的解剖结构的分层管道。该管道是基于一种称为多图谱似然融合(MALF)的两级贝叶斯参数估计算法构建的。在 MALF 中,通过使用期望最大化(EM)算法的最大后验估计来执行感兴趣参数的估计。在 E 步中融合多个图谱的似然,然后在 M 步中获得最优估计器,即融合似然的单个最大值。该管道有两个阶段;首先,通过快速 MALF 自动对输入的 T1 加权图像进行颅骨剥离,然后使用常规 MALF 自动提取感兴趣的内部大脑结构。我们根据两组具有明显不同解剖学和光度对比度的图像评估管道中每个模块的性能;患有发育障碍的儿科患者的 3T MPRAGE 扫描与患有痴呆症的老年患者的 1.5T SPGR 扫描。评估是通过 Dice 重叠进行定量的,并且通过视觉检查进行定性的。结果,我们展示了所提出的管道在性能方面的个体差异,这可能归因于年龄、诊断或成像参数(特别是场强)。对于两个数据集的皮质下和脑室结构,分层管道能够产生与金标准相比 Dice 重叠度从 0.8 到 0.964 的自动分割。与其他代表性分割算法进行了比较,相对于这些算法,所提出的分层管道表现出相当或更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2227/4347448/12b89d0ab135/fnins-09-00061-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验