Suppr超能文献

人类大脑扩散张量成像的多对比度多图谱分割

Multi-contrast multi-atlas parcellation of diffusion tensor imaging of the human brain.

作者信息

Tang Xiaoying, Yoshida Shoko, Hsu John, Huisman Thierry A G M, Faria Andreia V, Oishi Kenichi, Kutten Kwame, Poretti Andrea, Li Yue, Miller Michael I, Mori Susumu

机构信息

Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland, United States of America; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.

Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2014 May 8;9(5):e96985. doi: 10.1371/journal.pone.0096985. eCollection 2014.

Abstract

In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8-0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images - an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure.

摘要

在本文中,我们提出了一种基于扩散张量图像(DTI)将人脑划分为193个解剖结构的新方法。这是在使用多个DTI图谱进行多对比度微分同胚似然融合的背景下完成的。DTI图像被建模为高维场,每个体素呈现出一个由平均扩散率(MD)、分数各向异性(FA)和纤维角度组成的向量值特征。对于每个结构,特征向量中每个元素的概率分布被建模为高斯混合,其参数从标记的图谱中估计。然后使用结构特定的特征向量对测试图像进行分割。对于每个图谱,基于结构特定的向量特征迭代计算似然性。然后融合来自多个图谱的似然性。似然性的更新和融合基于期望最大化(EM)算法来解决最大后验(MAP)估计问题。我们首先通过检查25名具有不同程度结构异常的受试者的18个结构的分割准确性来证明该算法的性能。获得了范围在0.8 - 0.9之间的骰子值。此外,还发现自动分割和手动分割的体积大小之间存在强相关性。然后,我们基于另一个包含16个DTI图像的数据集展示了扫描 - 重扫可重复性——体积、平均FA和平均MD的平均分别为3.73%、1.91%和1.79%。最后,对正常人群中每个结构的解剖变异性范围进行了量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beba/4014574/b6ddec5bfe02/pone.0096985.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验