Rohlfing Torsten, Russakoff Daniel B, Maurer Calvin R
Image Guidance Laboratories, Department of Neurosurgery, Stanford University, Stanford, CA 94305-5327, USA.
IEEE Trans Med Imaging. 2004 Aug;23(8):983-94. doi: 10.1109/TMI.2004.830803.
It is well known in the pattern recognition community that the accuracy of classifications obtained by combining decisions made by independent classifiers can be substantially higher than the accuracy of the individual classifiers. We have previously shown this to be true for atlas-based segmentation of biomedical images. The conventional method for combining individual classifiers weights each classifier equally (vote or sum rule fusion). In this paper, we propose two methods that estimate the performances of the individual classifiers and combine the individual classifiers by weighting them according to their estimated performance. The two methods are multiclass extensions of an expectation-maximization (EM) algorithm for ground truth estimation of binary classification based on decisions of multiple experts (Warfield et al., 2004). The first method performs parameter estimation independently for each class with a subsequent integration step. The second method considers all classes simultaneously. We demonstrate the efficacy of these performance-based fusion methods by applying them to atlas-based segmentations of three-dimensional confocal microscopy images of bee brains. In atlas-based image segmentation, multiple classifiers arise naturally by applying different registration methods to the same atlas, or the same registration method to different atlases, or both. We perform a validation study designed to quantify the success of classifier combination methods in atlas-based segmentation. By applying random deformations, a given ground truth atlas is transformed into multiple segmentations that could result from imperfect registrations of an image to multiple atlas images. In a second evaluation study, multiple actual atlas-based segmentations are combined and their accuracies computed by comparing them to a manual segmentation. We demonstrate in both evaluation studies that segmentations produced by combining multiple individual registration-based segmentations are more accurate for the two classifier fusion methods we propose, which weight the individual classifiers according to their EM-based performance estimates, than for simple sum rule fusion, which weights each classifier equally.
在模式识别领域,众所周知,通过组合独立分类器所做决策而获得的分类准确率,可能会显著高于单个分类器的准确率。我们之前已经证明,在基于图谱的生物医学图像分割中确实如此。组合单个分类器的传统方法是对每个分类器进行同等加权(投票或求和规则融合)。在本文中,我们提出了两种方法,这两种方法先估计单个分类器的性能,然后根据其估计性能对单个分类器进行加权来进行组合。这两种方法是基于多位专家决策的二分类地面真值估计的期望最大化(EM)算法的多类扩展(Warfield等人,2004年)。第一种方法对每个类别独立进行参数估计,随后进行整合步骤。第二种方法同时考虑所有类别。我们将这些基于性能的融合方法应用于蜜蜂大脑的三维共聚焦显微镜图像的基于图谱的分割中,以证明其有效性。在基于图谱的图像分割中,通过对同一图谱应用不同的配准方法,或对不同图谱应用相同的配准方法,或两者兼用,自然会产生多个分类器。我们进行了一项验证研究,旨在量化分类器组合方法在基于图谱的分割中的成功程度。通过应用随机变形,将给定的地面真值图谱转换为多个分割结果,这些结果可能是由于图像与多个图谱图像的不完美配准而产生的。在第二项评估研究中,将多个实际的基于图谱的分割结果进行组合,并通过与手动分割结果进行比较来计算它们的准确率。我们在两项评估研究中均证明,对于我们提出的两种分类器融合方法,即根据基于EM的性能估计对单个分类器进行加权,与简单的求和规则融合(对每个分类器进行同等加权)相比,组合多个基于个体配准的分割结果所产生的分割在准确性上更高。