School of Medical Sciences, RMIT University Bundoora, VIC, Australia.
Laboratory of Comparative Endocrinology, Biology Department, KU Leuven Leuven, Belgium.
Front Neurosci. 2015 Mar 3;9:66. doi: 10.3389/fnins.2015.00066. eCollection 2015.
Thyroid hormones are key players in regulating brain development. Thus, transfer of appropriate quantities of thyroid hormones from the blood into the brain at specific stages of development is critical. The choroid plexus forms the blood-cerebrospinal fluid barrier. In reptiles, birds and mammals, the main protein synthesized and secreted by the choroid plexus is a thyroid hormone distributor protein: transthyretin. This transthyretin is secreted into the cerebrospinal fluid and moves thyroid hormones from the blood into the cerebrospinal fluid. Maximal transthyretin synthesis in the choroid plexus occurs just prior to the period of rapid brain growth, suggesting that choroid plexus-derived transthyretin moves thyroid hormones from blood into cerebrospinal fluid just prior to when thyroid hormones are required for rapid brain growth. The structure of transthyretin has been highly conserved, implying strong selection pressure and an important function. In mammals, transthyretin binds T4 (precursor form of thyroid hormone) with higher affinity than T3 (active form of thyroid hormone). In all other vertebrates, transthyretin binds T3 with higher affinity than T4. As mammals are the exception, we should not base our thinking about the role of transthyretin in the choroid plexus solely on mammalian data. Thyroid hormone transmembrane transporters are involved in moving thyroid hormones into and out of cells and have been identified in many tissues, including the choroid plexus. Thyroid hormones enter the choroid plexus via thyroid hormone transmembrane transporters and leave the choroid plexus to enter the cerebrospinal fluid via either thyroid hormone transmembrane transporters or via choroid plexus-derived transthyretin secreted into the cerebrospinal fluid. The quantitative contribution of each route during development remains to be elucidated. This is part of a review series on ontogeny and phylogeny of brain barrier mechanisms.
甲状腺激素是调节大脑发育的关键因素。因此,在发育的特定阶段,将适当数量的甲状腺激素从血液转移到大脑中是至关重要的。脉络丛形成了血脑屏障。在爬行动物、鸟类和哺乳动物中,脉络丛合成和分泌的主要蛋白质是甲状腺激素转运蛋白:甲状腺素运载蛋白。这种甲状腺素运载蛋白被分泌到脑脊液中,将甲状腺激素从血液转移到脑脊液中。脉络丛中甲状腺素运载蛋白的最大合成发生在大脑快速生长之前,这表明脉络丛衍生的甲状腺素运载蛋白在需要甲状腺激素促进大脑快速生长之前,将甲状腺激素从血液转移到脑脊液中。甲状腺素运载蛋白的结构高度保守,这意味着它受到强烈的选择压力和具有重要的功能。在哺乳动物中,甲状腺素运载蛋白与 T4(甲状腺激素的前体形式)的结合亲和力高于 T3(甲状腺激素的活性形式)。在所有其他脊椎动物中,甲状腺素运载蛋白与 T3 的结合亲和力高于 T4。由于哺乳动物是例外,我们不应该仅仅根据哺乳动物的数据来推断甲状腺素运载蛋白在脉络丛中的作用。甲状腺激素跨膜转运蛋白参与将甲状腺激素进出细胞,并已在许多组织中被鉴定出来,包括脉络丛。甲状腺激素通过甲状腺激素跨膜转运蛋白进入脉络丛,并通过甲状腺激素跨膜转运蛋白或通过分泌到脑脊液中的脉络丛衍生的甲状腺素运载蛋白离开脉络丛进入脑脊液。在发育过程中,每种途径的定量贡献仍有待阐明。这是关于脑屏障机制的个体发生和系统发生的综述系列的一部分。