Suppr超能文献

前馈和反馈输入对自下而上注意力的综合贡献。

Combined contributions of feedforward and feedback inputs to bottom-up attention.

机构信息

Jefferies International Limited , London, UK.

Department of Neurobiology, Stanford University School of Medicine , Stanford, CA, USA ; Howard Hughes Medical Institute , Stanford, CA, USA.

出版信息

Front Psychol. 2015 Mar 2;6:155. doi: 10.3389/fpsyg.2015.00155. eCollection 2015.

Abstract

In order to deal with a large amount of information carried by visual inputs entering the brain at any given point in time, the brain swiftly uses the same inputs to enhance processing in one part of visual field at the expense of the others. These processes, collectively called bottom-up attentional selection, are assumed to solely rely on feedforward processing of the external inputs, as it is implied by the nomenclature. Nevertheless, evidence from recent experimental and modeling studies points to the role of feedback in bottom-up attention. Here, we review behavioral and neural evidence that feedback inputs are important for the formation of signals that could guide attentional selection based on exogenous inputs. Moreover, we review results from a modeling study elucidating mechanisms underlying the emergence of these signals in successive layers of neural populations and how they depend on feedback from higher visual areas. We use these results to interpret and discuss more recent findings that can further unravel feedforward and feedback neural mechanisms underlying bottom-up attention. We argue that while it is descriptively useful to separate feedforward and feedback processes underlying bottom-up attention, these processes cannot be mechanistically separated into two successive stages as they occur at almost the same time and affect neural activity within the same brain areas using similar neural mechanisms. Therefore, understanding the interaction and integration of feedforward and feedback inputs is crucial for better understanding of bottom-up attention.

摘要

为了处理在任何特定时刻进入大脑的大量视觉输入所携带的信息,大脑会迅速利用相同的输入来增强视野中某一部分的处理,而牺牲其他部分。这些过程统称为自下而上的注意选择,据其名称可知,它们被认为仅依赖于外部输入的前馈处理。然而,最近的实验和建模研究的证据表明,反馈在自下而上的注意中起着作用。在这里,我们回顾了行为和神经证据,表明反馈输入对于形成可以根据外部输入引导注意选择的信号很重要。此外,我们回顾了一项建模研究的结果,该研究阐明了在神经群体的连续层中出现这些信号的机制,以及它们如何依赖于来自更高视觉区域的反馈。我们使用这些结果来解释和讨论最近的发现,这些发现可以进一步揭示自下而上注意的前馈和反馈神经机制。我们认为,虽然将自下而上注意的前馈和反馈过程分开进行描述在描述上是有用的,但这些过程不能在机制上分为两个连续的阶段,因为它们几乎同时发生,并使用类似的神经机制影响同一大脑区域的神经活动。因此,理解前馈和反馈输入的相互作用和整合对于更好地理解自下而上的注意至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13eb/4345765/f3b3fc8e57e2/fpsyg-06-00155-g0001.jpg

相似文献

1
Combined contributions of feedforward and feedback inputs to bottom-up attention.
Front Psychol. 2015 Mar 2;6:155. doi: 10.3389/fpsyg.2015.00155. eCollection 2015.
2
Visual saliency computations: mechanisms, constraints, and the effect of feedback.
J Neurosci. 2010 Sep 22;30(38):12831-43. doi: 10.1523/JNEUROSCI.1517-10.2010.
4
Processing stages underlying word recognition in the anteroventral temporal lobe.
Neuroimage. 2006 May 1;30(4):1401-13. doi: 10.1016/j.neuroimage.2005.10.053. Epub 2006 Feb 17.
5
On the impact of attention and motor planning on the lateral geniculate nucleus.
Prog Brain Res. 2005;149:11-29. doi: 10.1016/S0079-6123(05)49002-0.
6
Selecting category specific visual information: Top-down and bottom-up control of object based attention.
Conscious Cogn. 2015 Sep;35:330-41. doi: 10.1016/j.concog.2015.02.006. Epub 2015 Feb 28.
7
Top-Down Beta Enhances Bottom-Up Gamma.
J Neurosci. 2017 Jul 12;37(28):6698-6711. doi: 10.1523/JNEUROSCI.3771-16.2017. Epub 2017 Jun 7.
8
Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.
Curr Biol. 2016 Feb 8;26(3):371-6. doi: 10.1016/j.cub.2015.12.038. Epub 2016 Jan 28.
10
Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task.
Neurosci Lett. 2015 Jan 12;585:149-54. doi: 10.1016/j.neulet.2014.11.029. Epub 2014 Nov 20.

引用本文的文献

2
Attention reinforces human corticofugal system to aid speech perception in noise.
Neuroimage. 2021 Jul 15;235:118014. doi: 10.1016/j.neuroimage.2021.118014. Epub 2021 Mar 29.
3
Inherent Importance of Early Visual Features in Attraction of Human Attention.
Comput Intell Neurosci. 2020 Dec 22;2020:3496432. doi: 10.1155/2020/3496432. eCollection 2020.
4
Influence of learning strategy on response time during complex value-based learning and choice.
PLoS One. 2018 May 22;13(5):e0197263. doi: 10.1371/journal.pone.0197263. eCollection 2018.
5
Feature-based learning improves adaptability without compromising precision.
Nat Commun. 2017 Nov 24;8(1):1768. doi: 10.1038/s41467-017-01874-w.
6
Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC.
Cereb Cortex. 2018 Nov 1;28(11):3816-3828. doi: 10.1093/cercor/bhx243.
7
Social Saliency of the Cue Slows Attention Shifts.
Front Psychol. 2017 May 15;8:738. doi: 10.3389/fpsyg.2017.00738. eCollection 2017.
9
Feedforward and feedback processes in vision.
Front Psychol. 2015 Mar 12;6:279. doi: 10.3389/fpsyg.2015.00279. eCollection 2015.

本文引用的文献

1
Simultaneous selection by object-based attention in visual and frontal cortex.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6467-72. doi: 10.1073/pnas.1316181111. Epub 2014 Apr 7.
2
3
Guided Search 2.0 A revised model of visual search.
Psychon Bull Rev. 1994 Jun;1(2):202-38. doi: 10.3758/BF03200774.
4
5
Orientation pop-out processing in human visual cortex.
Neuroimage. 2013 Nov 1;81:73-80. doi: 10.1016/j.neuroimage.2013.05.040. Epub 2013 May 17.
7
Dissociable dopaminergic control of saccadic target selection and its implications for reward modulation.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3579-84. doi: 10.1073/pnas.1221236110. Epub 2013 Feb 11.
8
Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe.
Nat Neurosci. 2013 Jan;16(1):98-104. doi: 10.1038/nn.3282. Epub 2012 Dec 16.
9
Early involvement of prefrontal cortex in visual bottom-up attention.
Nat Neurosci. 2012 Jul 22;15(8):1160-6. doi: 10.1038/nn.3164.
10
Top-down versus bottom-up attentional control: a failed theoretical dichotomy.
Trends Cogn Sci. 2012 Aug;16(8):437-43. doi: 10.1016/j.tics.2012.06.010. Epub 2012 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验