Suppr超能文献

热诱导的骨细胞损伤引发重塑信号级联反应。

Thermally induced osteocyte damage initiates a remodelling signaling cascade.

作者信息

Dolan Eimear B, Haugh Matthew G, Voisin Muriel C, Tallon David, McNamara Laoise M

机构信息

Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland.

Stryker Ireland, Carrigtwohill, Cork, Ireland.

出版信息

PLoS One. 2015 Mar 18;10(3):e0119652. doi: 10.1371/journal.pone.0119652. eCollection 2015.

Abstract

Thermal elevations experienced by bone during orthopaedic procedures, such as cutting and drilling, exothermal reactions from bone cement, and thermal therapies such as tumor ablation, can result in thermal damage leading to death of native bone cells (osteocytes, osteoblasts, osteoclasts and mesenchymal stem cells). Osteocytes are believed to be the orchestrators of bone remodeling, which recruit nearby osteoclast and osteoblasts to control resorption and bone growth in response to mechanical stimuli and physical damage. However, whether heat-induced osteocyte damage can directly elicit bone remodelling has yet to be determined. This study establishes the link between osteocyte thermal damage and the remodeling cascade. We show that osteocytes directly exposed to thermal elevations (47°C for 1 minute) become significantly apoptotic and alter the expression of osteogenic genes (Opg and Cox2). The Rankl/Opg ratio is consistently down-regulated, at days 1, 3 and 7 in MLO-Y4s heat-treated to 47°C for 1 minute. Additionally, the pro-osteoblastogenic signaling marker Cox2 is significantly up-regulated in heat-treated MLO-Y4s by day 7. Furthermore, secreted factors from heat-treated MLO-Y4s administered to MSCs using a novel co-culture system are shown to activate pre-osteoblastic MSCs to increase production of the pro-osteoblastic differentiation marker, alkaline phosphatase (day 7, 14), and calcium deposition (day 21). Most interestingly, an initial pro-osteoclastogenic signaling response (increase Rankl and Rankl/Opg ratio at day 1) followed by later stage pro-osteoblastogenic signaling (down-regulation in Rankl and the Rankl/Opg ratio and an up-regulation in Opg and Cox2 by day 7) was observed in non-heat-treated MLO-Y4s in co-culture when these were exposed to the biochemicals produced by heat-treated MLO-Y4s. Taken together, these results elucidate the vital role of osteocytes in detecting and responding to thermal damage by means of thermally induced apoptosis followed by a cascade of remodelling responses.

摘要

在骨科手术过程中,骨骼所经历的温度升高,如切割和钻孔时产生的温度升高、骨水泥的放热反应以及肿瘤消融等热疗法,都可能导致热损伤,进而致使天然骨细胞(骨细胞、成骨细胞、破骨细胞和间充质干细胞)死亡。骨细胞被认为是骨重塑的协调者,它们会招募附近的破骨细胞和成骨细胞,以响应机械刺激和物理损伤来控制骨吸收和骨生长。然而,热诱导的骨细胞损伤是否能直接引发骨重塑尚待确定。本研究建立了骨细胞热损伤与重塑级联反应之间的联系。我们发现,直接暴露于温度升高(47°C持续1分钟)的骨细胞会显著凋亡,并改变成骨基因(骨保护素和环氧化酶2)的表达。在MLO - Y4s细胞中,经47°C处理1分钟后,在第1天、第3天和第7天,核因子κB受体活化因子配体/骨保护素(Rankl/Opg)比值持续下调。此外,到第7天,经热处理的MLO - Y4s细胞中促成骨细胞生成信号标记物环氧化酶2显著上调。此外,使用一种新型共培养系统,将经热处理的MLO - Y4s细胞分泌的因子施用于间充质干细胞(MSCs),结果显示这些因子能激活前成骨细胞样MSCs,从而增加促成骨细胞分化标记物碱性磷酸酶的产生(第7天、第14天)以及钙沉积(第21天)。最有趣的是,当未热处理的MLO - Y4s细胞在共培养中暴露于经热处理的MLO - Y4s细胞产生的生化物质时,观察到其最初出现促破骨细胞生成信号反应(第1天核因子κB受体活化因子配体和Rankl/Opg比值增加),随后在后期出现促成骨细胞生成信号(到第7天核因子κB受体活化因子配体和Rankl/Opg比值下调,骨保护素和环氧化酶2上调)。综上所述,这些结果阐明了骨细胞在通过热诱导凋亡检测和响应热损伤,随后引发一系列重塑反应中所起的关键作用。

相似文献

1
Thermally induced osteocyte damage initiates a remodelling signaling cascade.
PLoS One. 2015 Mar 18;10(3):e0119652. doi: 10.1371/journal.pone.0119652. eCollection 2015.
2
Thermally induced osteocyte damage initiates pro-osteoclastogenic gene expression in vivo.
J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2016.0337.
3
Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting.
J R Soc Interface. 2012 Dec 7;9(77):3503-13. doi: 10.1098/rsif.2012.0520. Epub 2012 Aug 22.
6
The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction.
Bone. 2015 Oct;79:71-8. doi: 10.1016/j.bone.2015.05.017. Epub 2015 May 16.
7
MLO-Y4 osteocyte-like cells support osteoclast formation and activation.
J Bone Miner Res. 2002 Nov;17(11):2068-79. doi: 10.1359/jbmr.2002.17.11.2068.

引用本文的文献

1
Effects of Thermal Environment on Bone Microenvironment: A Narrative Review.
Int J Mol Sci. 2025 Apr 9;26(8):3501. doi: 10.3390/ijms26083501.
2
-PCL shape memory polymer (SMP) scaffolds with tunable transition temperatures for enhanced utility.
J Mater Chem B. 2024 Apr 17;12(15):3694-3702. doi: 10.1039/d4tb00050a.
3
Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants.
Bioact Mater. 2023 Aug 1;30:154-168. doi: 10.1016/j.bioactmat.2023.07.017. eCollection 2023 Dec.
4
How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature.
Int J Nanomedicine. 2023 Jun 30;18:3535-3575. doi: 10.2147/IJN.S375964. eCollection 2023.
5
Osteocyte Apoptosis Contributes to Cold Exposure-induced Bone Loss.
Front Bioeng Biotechnol. 2021 Nov 11;9:733582. doi: 10.3389/fbioe.2021.733582. eCollection 2021.
6
Comparison of Surgical Smoke Generated During Electrosurgery with Aerosolized Particulates from Ultrasonic and High-Speed Cutting.
Ann Biomed Eng. 2021 Feb;49(2):560-572. doi: 10.1007/s10439-020-02587-w. Epub 2020 Aug 7.
7
The Effect of TBB, as an Initiator, on the Biological Compatibility of PMMA/MMA Bone Cement.
Int J Mol Sci. 2020 Jun 4;21(11):4016. doi: 10.3390/ijms21114016.
8
9
Apoptotic Osteocytes Induce RANKL Production in Bystanders via Purinergic Signaling and Activation of Pannexin Channels.
J Bone Miner Res. 2020 May;35(5):966-977. doi: 10.1002/jbmr.3954. Epub 2020 Feb 11.
10
A Comparative Assessment of Implant Site Viability in Humans and Rats.
J Dent Res. 2018 Apr;97(4):451-459. doi: 10.1177/0022034517742631. Epub 2017 Dec 4.

本文引用的文献

1
Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo.
Bone. 2014 Jul;64:132-7. doi: 10.1016/j.bone.2014.03.049. Epub 2014 Apr 4.
3
Osteocytes: master orchestrators of bone.
Calcif Tissue Int. 2014 Jan;94(1):5-24. doi: 10.1007/s00223-013-9790-y. Epub 2013 Sep 17.
4
Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation.
J Mech Behav Biomed Mater. 2013 Dec;28:183-94. doi: 10.1016/j.jmbbm.2013.06.013. Epub 2013 Jul 18.
5
BMP9 and COX-2 form an important regulatory loop in BMP9-induced osteogenic differentiation of mesenchymal stem cells.
Bone. 2013 Nov;57(1):311-21. doi: 10.1016/j.bone.2013.08.015. Epub 2013 Aug 24.
8
Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting.
J R Soc Interface. 2012 Dec 7;9(77):3503-13. doi: 10.1098/rsif.2012.0520. Epub 2012 Aug 22.
9
Osteocyte signaling in bone.
Curr Osteoporos Rep. 2012 Jun;10(2):118-25. doi: 10.1007/s11914-012-0105-4.
10
Intercellular cross-talk among bone cells: new factors and pathways.
Curr Osteoporos Rep. 2012 Jun;10(2):109-17. doi: 10.1007/s11914-012-0096-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验