Sefa Sandra, Espiritu Jonathan, Ćwieka Hanna, Greving Imke, Flenner Silja, Will Olga, Beuer Susanne, Wieland D C Florian, Willumeit-Römer Regine, Zeller-Plumhoff Berit
Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany.
Syntellix AG, Hannover, Germany.
Bioact Mater. 2023 Aug 1;30:154-168. doi: 10.1016/j.bioactmat.2023.07.017. eCollection 2023 Dec.
The utilization of biodegradable magnesium (Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application. One such alloy, magnesium-10 weight percent gadolinium (Mg-10Gd), has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing. Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration; however, it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium (Ti). A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture. To address this, we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling. By using the methods outlined, the vascular porosity, lacunar porosity and the lacunar-canaliculi network (LCN) morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated. Our investigation revealed that within our observation period, the degradation of Mg-10Gd implants was associated with significantly lower (p < 0.05) lacunar density in the surrounding bone, compared to Ti. Remarkably, the LCN morphology and the fluid flow analysis did not significantly differ for both implant types. In summary, a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants. This implies potential disparities in bone remodelling rates when compared to Ti implants. Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture, contributing to a deeper understanding of the implications for successful osseointegration.
使用可生物降解的镁(Mg)基植入物来恢复创伤后骨功能,代表了骨科应用中的一种变革性方法。一种这样的合金,即含10重量百分比钆的镁(Mg-10Gd),已被专门研发出来,以解决镁的快速降解问题,同时增强其机械性能以促进骨愈合。先前的研究表明,Mg-10Gd表现出良好的骨整合;然而,与钛(Ti)等传统植入物相比,它表现出独特的超微结构适应性。一个尚未探索的关键方面是Mg-10Gd降解对骨微结构的影响。为了解决这个问题,我们采用了同步辐射的分层三维成像,并结合基于图像的有限元建模。通过使用所述方法,研究了在大鼠模型中,从植入后4周到20周,与Ti相比,Mg-10Gd周围骨的血管孔隙率、腔隙孔隙率和腔隙-小管网络(LCN)形态。我们的研究表明,在我们的观察期内,与Ti相比,Mg-10Gd植入物的降解与周围骨中显著更低(p < 0.05)的腔隙密度相关。值得注意的是,两种植入物类型的LCN形态和流体流动分析没有显著差异。总之,在Mg-10Gd植入物降解时,在周围骨中检测到更明显的较低腔隙分布,而不是它们的形态变化。这意味着与Ti植入物相比,骨重塑率可能存在差异。我们的发现揭示了Mg-10Gd降解与骨微结构之间的复杂关系,有助于更深入地理解对成功骨整合的影响。