Suppr超能文献

等温线建模、动力学研究以及使用响应面法对批量参数进行优化以利用真菌生物质有效去除六价铬

Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr(VI) using fungal biomass.

作者信息

S Melvin Samuel, M Evy Alice Abigail, Chidambaram Ramalingam

机构信息

School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India.

出版信息

PLoS One. 2015 Mar 18;10(3):e0116884. doi: 10.1371/journal.pone.0116884. eCollection 2015.

Abstract

Biosorption is a promising alternative method to replace the existing conventional technique for Cr(VI) removal from the industrial effluent. In the present experimental design, the removal of Cr(VI) from the aqueous solution was studied by Aspergillus niger MSR4 under different environmental conditions in the batch systems. The optimum conditions of biosorption were determined by investigating pH (2.0) and temperature (27°C). The effects of parameters such as biomass dosage (g/L), initial Cr(VI) concentration (mg/L) and contact time (min) on Cr(VI) biosorption were analyzed using a three parameter Box-Behnken design (BBD). The experimental data well fitted to the Langmuir isotherm, in comparison to the other isotherm models tested. The results of the D-R isotherm model suggested that a chemical ion-exchange mechanism was involved in the biosorption process. The biosorption process followed the pseudo-second-order kinetic model, which indicates that the rate limiting step is chemisorption process. Fourier transform infrared (FT-IR) spectroscopic studies revealed the possible involvement of functional groups, such as hydroxyl, carboxyl, amino and carbonyl group in the biosorption process. The thermodynamic parameters for Cr(VI) biosorption were also calculated, and the negative ∆Gº values indicated the spontaneous nature of biosorption process.

摘要

生物吸附是一种很有前景的替代方法,可取代现有的从工业废水中去除六价铬的传统技术。在本实验设计中,研究了黑曲霉MSR4在间歇系统中不同环境条件下从水溶液中去除六价铬的情况。通过研究pH值(2.0)和温度(27°C)确定了生物吸附的最佳条件。使用三参数Box-Behnken设计(BBD)分析了生物量剂量(g/L)、初始六价铬浓度(mg/L)和接触时间(min)等参数对六价铬生物吸附的影响。与测试的其他等温线模型相比,实验数据很好地拟合了朗缪尔等温线。D-R等温线模型的结果表明生物吸附过程涉及化学离子交换机制。生物吸附过程遵循准二级动力学模型,这表明限速步骤是化学吸附过程。傅里叶变换红外(FT-IR)光谱研究揭示了羟基、羧基、氨基和羰基等官能团可能参与了生物吸附过程。还计算了六价铬生物吸附的热力学参数,负的∆Gº值表明生物吸附过程的自发性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe6e/4364747/0fc5604f80b5/pone.0116884.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验