Suppr超能文献

贝伐单抗治疗的胶质母细胞瘤患者DCE-MRI数据的GPU加速房室建模分析

GPU-accelerated compartmental modeling analysis of DCE-MRI data from glioblastoma patients treated with bevacizumab.

作者信息

Hsu Yu-Han H, Huang Ziyin, Ferl Gregory Z, Ng Chee M

机构信息

Division of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States of America.

Early Development Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States of America.

出版信息

PLoS One. 2015 Mar 18;10(3):e0118421. doi: 10.1371/journal.pone.0118421. eCollection 2015.

Abstract

The compartment model analysis using medical imaging data is the well-established but extremely time consuming technique for quantifying the changes in microvascular physiology of targeted organs in clinical patients after antivascular therapies. In this paper, we present a first graphics processing unit-accelerated method for compartmental modeling of medical imaging data. Using this approach, we performed the analysis of dynamic contrast-enhanced magnetic resonance imaging data from bevacizumab-treated glioblastoma patients in less than one minute per slice without losing accuracy. This approach reduced the computation time by more than 120-fold comparing to a central processing unit-based method that performed the analogous analysis steps in serial and more than 17-fold comparing to the algorithm that optimized for central processing unit computation. The method developed in this study could be of significant utility in reducing the computational times required to assess tumor physiology from dynamic contrast-enhanced magnetic resonance imaging data in preclinical and clinical development of antivascular therapies and related fields.

摘要

使用医学成像数据的房室模型分析是一种成熟但极其耗时的技术,用于量化临床患者接受抗血管治疗后靶器官微血管生理学的变化。在本文中,我们提出了一种首个用于医学成像数据房室建模的图形处理单元加速方法。使用这种方法,我们对来自贝伐单抗治疗的胶质母细胞瘤患者的动态对比增强磁共振成像数据进行分析,每切片不到一分钟,且不损失准确性。与基于中央处理器的方法相比,该方法将计算时间减少了120倍以上,基于中央处理器的方法以串行方式执行类似的分析步骤;与针对中央处理器计算进行优化的算法相比,减少了17倍以上。本研究中开发的方法在减少抗血管治疗及相关领域的临床前和临床开发中从动态对比增强磁共振成像数据评估肿瘤生理学所需的计算时间方面可能具有重要用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a552/4364976/5b46d16984d1/pone.0118421.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验