Suppr超能文献

基于 GPU 的医学图像处理技术综述。

A survey of GPU-based medical image computing techniques.

机构信息

Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; ; CUHK Shenzhen Research Institute, Shenzhen, Guangdong Province, P.R. China; ; Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P.R. China.

出版信息

Quant Imaging Med Surg. 2012 Sep;2(3):188-206. doi: 10.3978/j.issn.2223-4292.2012.08.02.

Abstract

Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine.

摘要

医学影像学在从医学科研到诊断和治疗规划的整个临床应用中都起着至关重要的作用。然而,由于在实际临床应用中需要处理大型三维(3D)医学数据集,因此医学成像过程通常计算量很大。随着图形处理器性能的迅速提高、编程支持的改进以及出色的性价比,图形处理单元(GPU)已成为计算密集型和高要求任务的具有竞争力的并行计算平台,适用于广泛的医学图像应用。本调查的主要目的是为从事基于 GPU 的医学图像处理的初学者或研究人员提供全面的参考资料。在本调查中,回顾了 GPU 计算的不断发展,并调查了医学图像处理三个领域(即分割、配准和可视化)中的现有传统应用。还讨论了当前基于 GPU 的医学成像的潜在优势和相关挑战,以激发医学领域的未来应用。

相似文献

1
A survey of GPU-based medical image computing techniques.
Quant Imaging Med Surg. 2012 Sep;2(3):188-206. doi: 10.3978/j.issn.2223-4292.2012.08.02.
3
GPU computing in medical physics: a review.
Med Phys. 2011 May;38(5):2685-97. doi: 10.1118/1.3578605.
4
Medical image processing on the GPU - past, present and future.
Med Image Anal. 2013 Dec;17(8):1073-94. doi: 10.1016/j.media.2013.05.008. Epub 2013 Jun 5.
5
A survey of medical image registration on graphics hardware.
Comput Methods Programs Biomed. 2011 Dec;104(3):e45-57. doi: 10.1016/j.cmpb.2010.10.009. Epub 2010 Nov 26.
6
Accelerating B-spline interpolation on GPUs: Application to medical image registration.
Comput Methods Programs Biomed. 2020 Sep;193:105431. doi: 10.1016/j.cmpb.2020.105431. Epub 2020 Mar 3.
7
A review of GPU-based medical image reconstruction.
Phys Med. 2017 Oct;42:76-92. doi: 10.1016/j.ejmp.2017.07.024. Epub 2017 Sep 5.
8
A survey of GPU-based acceleration techniques in MRI reconstructions.
Quant Imaging Med Surg. 2018 Mar;8(2):196-208. doi: 10.21037/qims.2018.03.07.
9
Medical image segmentation on GPUs--a comprehensive review.
Med Image Anal. 2015 Feb;20(1):1-18. doi: 10.1016/j.media.2014.10.012. Epub 2014 Dec 2.
10
Faster dense deformable image registration by utilizing both CPU and GPU.
J Med Imaging (Bellingham). 2021 Jan;8(1):014002. doi: 10.1117/1.JMI.8.1.014002. Epub 2021 Feb 1.

引用本文的文献

1
A highly efficient, scalable pipeline for fixed feature extraction from large-scale high-content imaging screens.
iScience. 2024 Dec 6;27(12):111434. doi: 10.1016/j.isci.2024.111434. eCollection 2024 Dec 20.
4
Differential Deep Convolutional Neural Network Model for Brain Tumor Classification.
Brain Sci. 2021 Mar 10;11(3):352. doi: 10.3390/brainsci11030352.
5
The Utility of Cloud Computing in Analyzing GPU-Accelerated Deformable Image Registration of CT and CBCT Images in Head and Neck Cancer Radiation Therapy.
IEEE J Transl Eng Health Med. 2016 Aug 17;4:4300311. doi: 10.1109/JTEHM.2016.2597838. eCollection 2016.
6
Pancreatic cancer detection and characterization-state of the art cross-sectional imaging and imaging data analysis.
Transl Gastroenterol Hepatol. 2019 May 21;4:35. doi: 10.21037/tgh.2019.05.04. eCollection 2019.
7
Robust Cell Detection for Large-Scale 3D Microscopy Using GPU-Accelerated Iterative Voting.
Front Neuroanat. 2018 Apr 26;12:28. doi: 10.3389/fnana.2018.00028. eCollection 2018.
8
A survey of GPU-based acceleration techniques in MRI reconstructions.
Quant Imaging Med Surg. 2018 Mar;8(2):196-208. doi: 10.21037/qims.2018.03.07.
9
Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data.
Theranostics. 2016 Jan 1;6(3):328-41. doi: 10.7150/thno.13624. eCollection 2016.
10
Recent advances in surgical planning & navigation for tumor biopsy and resection.
Quant Imaging Med Surg. 2015 Oct;5(5):640-8. doi: 10.3978/j.issn.2223-4292.2015.10.03.

本文引用的文献

1
Non-rigid Registration for Large Sets of Microscopic Images on Graphics Processors.
J Signal Process Syst. 2009 Apr 1;55(1-3):229-250. doi: 10.1007/s11265-008-0208-4.
2
GPU implementation of a deformable 3D image registration algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4897-900. doi: 10.1109/IEMBS.2011.6091213.
3
Extinction-based shading and illumination in GPU volume ray-casting.
IEEE Trans Vis Comput Graph. 2011 Dec;17(12):1795-802. doi: 10.1109/TVCG.2011.198.
4
Active learning for interactive 3D image segmentation.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603-10. doi: 10.1007/978-3-642-23626-6_74.
5
True 4D Image Denoising on the GPU.
Int J Biomed Imaging. 2011;2011:952819. doi: 10.1155/2011/952819. Epub 2011 Oct 1.
6
GPU computing in medical physics: a review.
Med Phys. 2011 May;38(5):2685-97. doi: 10.1118/1.3578605.
7
GPU-based iterative cone-beam CT reconstruction using tight frame regularization.
Phys Med Biol. 2011 Jul 7;56(13):3787-807. doi: 10.1088/0031-9155/56/13/004. Epub 2011 May 31.
8
Accelerating image registration of MRI by GPU-based parallel computation.
Magn Reson Imaging. 2011 Jun;29(5):712-6. doi: 10.1016/j.mri.2011.02.027. Epub 2011 Apr 29.
9
A survey of medical image registration on graphics hardware.
Comput Methods Programs Biomed. 2011 Dec;104(3):e45-57. doi: 10.1016/j.cmpb.2010.10.009. Epub 2010 Nov 26.
10
Volume visualization: a technical overview with a focus on medical applications.
J Digit Imaging. 2011 Aug;24(4):640-64. doi: 10.1007/s10278-010-9321-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验