Amitonova Lyubov V, de Boer Johannes F
1LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
2Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands.
Light Sci Appl. 2020 May 7;9:81. doi: 10.1038/s41377-020-0308-x. eCollection 2020.
For several centuries, far-field optical microscopy has remained a key instrument in many scientific disciplines, including physical, chemical, and biomedical research. Nonetheless, far-field imaging has many limitations: the spatial resolution is controlled by the diffraction of light, and the imaging speed follows the Nyquist-Shannon sampling theorem. The recent development of super-resolution techniques has pushed the limits of spatial resolution. However, these methods typically require complicated setups and long acquisition times and are still not applicable to deep-tissue bioimaging. Here, we report imaging through an ultra-thin fibre probe with a spatial resolution beyond the Abbe limit and a temporal resolution beyond the Nyquist limit simultaneously in a simple and compact setup. We use the random nature of mode coupling in a multimode fibre, the sparsity constraint and compressive sensing reconstruction. The new approach of super-resolution endo-microscopy does not use any specific properties of the fluorescent label, such as depletion or stochastic activation of the molecular fluorescent state, and therefore can be used for label-free imaging. We demonstrate a spatial resolution more than 2 times better than the diffraction limit and an imaging speed 20 times faster than the Nyquist limit. The proposed approach can significantly expand the realm of the application of nanoscopy for bioimaging.
几个世纪以来,远场光学显微镜一直是许多科学学科中的关键仪器,包括物理、化学和生物医学研究。尽管如此,远场成像存在许多局限性:空间分辨率受光的衍射控制,成像速度遵循奈奎斯特 - 香农采样定理。超分辨率技术的最新发展突破了空间分辨率的限制。然而,这些方法通常需要复杂的设置和较长的采集时间,并且仍然不适用于深层组织生物成像。在此,我们报告了一种通过超薄光纤探头进行成像的方法,该方法在简单紧凑的设置中同时实现了超越阿贝极限的空间分辨率和超越奈奎斯特极限的时间分辨率。我们利用多模光纤中模式耦合的随机性、稀疏性约束和压缩感知重建。这种超分辨率内镜显微镜的新方法不使用荧光标记的任何特定特性,例如分子荧光态的耗尽或随机激活,因此可用于无标记成像。我们展示了比衍射极限好2倍以上的空间分辨率和比奈奎斯特极限快20倍的成像速度。所提出的方法可以显著扩展纳米显微镜在生物成像中的应用领域。