Micsik Tamás, Kiszler Gábor, Szabó Daniel, Krecsák László, Hegedűs Csaba, Tibor Krenács, Molnár Béla
Ist Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085, Budapest, Üllöi u. 26, Hungary,
Pathol Oncol Res. 2015 Sep;21(4):1005-11. doi: 10.1007/s12253-015-9927-6. Epub 2015 Mar 19.
HER2-positive breast cancers usually benefit from anti-HER2 therapy, thus, HER2 evaluation became inevitable for patient selection. HER2-negative (IHC 0, 1+) and strong positive (IHC 3+) cases can easily be interpreted with immunohistochemistry, but equivocal (IHC 2+) cases require further analysis of HER2 gene amplification using in situ hybridization. Our study aimed to validate digital pathology and automated image analysis for unbiased evaluation of HER2 immunostains. We developed an image segmentation algorithm for analyzing HER2-immunostaining (4B5 clone) in tissue microarrays of breast cancers. Two pathologists assessed 309 microscopic regions of at least 100 tumor cells each--representing all HER2 positivity groups--according to international guidelines either semi-quantitatively or by using the MembraneQuant software. Scoring results were statistically correlated with each other and with FISH data, and almost perfect agreement was found (inter-method Cohen's kappa = 0.872, Spearman-rho = 0.928). When clinical relevance (scoring disagreement that may define erroneous treatment selection) was examined high agreement was found (quadratic weighted kappa = 0.967). Image analysis classified cases with excellent correlation with visual evaluation, therefore, MembraneQuant software proved to be a reliable tool for assessing HER2 immunoreactions and supporting better targeting anti-HER2 therapy. As digital analysis of immunomorphological markers allows permanent archiving, standardization and accurate reviewing of results, it supports quality assurance initiatives in diagnostic pathology--especially of equivocal cases which are hard to interpret.
人表皮生长因子受体2(HER2)阳性乳腺癌通常能从抗HER2治疗中获益,因此,对于患者选择而言,HER2评估变得不可或缺。HER2阴性(免疫组化0、1+)和强阳性(免疫组化3+)病例可通过免疫组化轻松解读,但结果不明确(免疫组化2+)的病例需要使用原位杂交进一步分析HER2基因扩增情况。我们的研究旨在验证数字病理学和自动图像分析用于无偏倚评估HER2免疫染色的效果。我们开发了一种图像分割算法,用于分析乳腺癌组织微阵列中的HER2免疫染色(4B5克隆)。两名病理学家根据国际指南,对至少100个肿瘤细胞的309个微观区域——代表所有HER2阳性组——进行半定量评估或使用MembraneQuant软件评估。评分结果相互之间以及与荧光原位杂交(FISH)数据进行了统计学关联,发现几乎完全一致(方法间Cohen's kappa = 0.872,Spearman相关系数 = 0.928)。在检查临床相关性(可能定义错误治疗选择的评分不一致)时,发现高度一致(二次加权kappa = 0.967)。图像分析对病例的分类与视觉评估具有极佳的相关性,因此,MembraneQuant软件被证明是评估HER2免疫反应和支持更好地靶向抗HER2治疗的可靠工具。由于免疫形态学标志物的数字分析允许对结果进行永久存档、标准化和准确复查,它支持诊断病理学中的质量保证举措——尤其是对于难以解读的不明确病例。