Su Feng, Lu Liping, Feng Sisi, Zhu Miaoli, Gao Zengqiang, Dong Yuhui
Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering, Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
Dalton Trans. 2015 Apr 28;44(16):7213-22. doi: 10.1039/c5dt00412h.
To evaluate magnetic properties of isostructural compounds, a series of 3D carboxylate coordination polymers [M(H2bpta)]n, (H4bpta = 2,2',4,4'-biphenyltetracarboxylic acid, M = Fe(II) (1), Ni(II) (2), Cu(II) (3) and Zn(II) (4)), was synthesized in H2O-CH3CN or H2O solvents, respectively. Structurally, complexes 1-4 have isostructural features with (5,5)-connected 3D framework, wherein the M(II) centre takes an octahedral coordination environment consisting of six oxygen atoms from carboxylates of ligands. The M(II) sites are linked by syn-anti carboxylates to form chains with an M···M separation of 4.880(2) (M = Fe), 4.784(2) (M = Ni), 4.541(2) (M = Cu), and 4.607(2) Å (M = Zn), respectively. The shortest M···M distances between interchains locate 9.122(4), 9.077(3), 9.361(3), and 8.767(2) Å, respectively. Magnetically, the isostructural polymers show different magnetic behaviors due to different spins of central ions. Theoretical analysis indicates that couplings between magnetic ions obey uniform chain models. The magnetic susceptibility of 1 and 2 are perfectly fitted by the modified Fisher model to yield an effective intra-chain exchange coupling constant of -0.81(1) and 3.67(2) cm(-1), respectively. For 3, a Heisenberg ferromagnetic S = 1/2 chain included the intra-chain magnetic exchange interaction (J = 9.28(1) cm(-1), and zj' = -0.068(3) cm(-1)), weak ferromagnetic interactions in intra-chains, and weak antiferromagnetic interactions between interchains. The phenomena of 1-3 accord with the common view that the exchange interaction between two magnetic M(II) ions bridged by the syn-anti carboxylate bridge is dominantly weak ferro- or anti-ferromagnetic interactions. In addition, the M-O-C-O-M spin exchange interactions |J| of M2(CO2)2 (M = Mn(3d(5))(20), Fe(3d(6)), Co(3d(7))(20), Ni(3d(8)), Cu(3d(9))) decrease in strength with Cu2(CO2)2 > Ni2(CO2)2 > Co2(CO2)2 > Fe2(CO2)2 > Mn2(CO2)2, consistent with orbit order.
为评估同构化合物的磁性,分别在H2O-CH3CN或H2O溶剂中合成了一系列三维羧酸盐配位聚合物[M(H2bpta)]n(H4bpta = 2,2',4,4'-联苯四羧酸,M = Fe(II) (1)、Ni(II) (2)、Cu(II) (3) 和Zn(II) (4))。在结构上,配合物1-4具有同构特征,为(5,5)-连接的三维框架,其中M(II)中心处于由配体羧酸盐的六个氧原子组成的八面体配位环境中。M(II)位点通过顺-反羧酸盐相连形成链,M···M间距分别为4.880(2) Å(M = Fe)、4.784(2) Å(M = Ni)、4.541(2) Å(M = Cu)和4.607(2) Å(M = Zn)。链间最短M···M距离分别为9.122(4) Å、9.077(3) Å、9.361(3) Å和8.767(2) Å。在磁性方面,由于中心离子的自旋不同,这些同构聚合物表现出不同的磁行为。理论分析表明,磁性离子之间的耦合遵循均匀链模型。1和2的磁化率通过修正的费舍尔模型得到完美拟合,分别得到有效链内交换耦合常数为-0.81(1) 和3.67(2) cm(-1)。对于3,一个海森堡铁磁S = 1/2链包括链内磁交换相互作用(J = 9.28(1) cm(-1),zj' = -0.068(3) cm(-1))、链内弱铁磁相互作用以及链间弱反铁磁相互作用。1-3的现象符合普遍观点,即由顺-反羧酸盐桥连接的两个磁性M(II)离子之间的交换相互作用主要是弱铁磁或反铁磁相互作用。此外,M2(CO2)2(M = Mn(3d(5))(20)、Fe(3d(6))、Co(3d(7))(20)、Ni(3d(8))、Cu(3d(9)))的M-O-C-O-M自旋交换相互作用|J|强度随着Cu2(CO2)2 > Ni2(CO2)2 > Co2(CO2)2 > Fe2(CO2)2 > Mn2(CO2)2而降低,与轨道顺序一致。