Suppr超能文献

通过纳入线性能量传递(LET)和相对生物效应(RBE)模型来实现质子治疗的全部临床潜力。

Towards Achieving the Full Clinical Potential of Proton Therapy by Inclusion of LET and RBE Models.

机构信息

Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, ORCRB-Roosevelt Drive, Oxford OX3 7DQ, UK.

出版信息

Cancers (Basel). 2015 Mar 17;7(1):460-80. doi: 10.3390/cancers7010460.

Abstract

Despite increasing use of proton therapy (PBT), several systematic literature reviews show limited gains in clinical outcomes, with publications mostly devoted to recent technical developments. The lack of randomised control studies has also hampered progress in the acceptance of PBT by many oncologists and policy makers. There remain two important uncertainties associated with PBT, namely: (1) accuracy and reproducibility of Bragg peak position (BPP); and (2) imprecise knowledge of the relative biological effect (RBE) for different tissues and tumours, and at different doses. Incorrect BPP will change dose, linear energy transfer (LET) and RBE, with risks of reduced tumour control and enhanced toxicity. These interrelationships are discussed qualitatively with respect to the ICRU target volume definitions. The internationally accepted proton RBE of 1.1 was based on assays and dose ranges unlikely to reveal the complete range of RBE in the human body. RBE values are not known for human (or animal) brain, spine, kidney, liver, intestine, etc. A simple efficiency model for estimating proton RBE values is described, based on data of Belli et al. and other authors, which allows linear increases in α and β with LET, with a gradient estimated using a saturation model from the low LET α and β radiosensitivity parameter input values, and decreasing RBE with increasing dose. To improve outcomes, 3-D dose-LET-RBE and bio-effectiveness maps are required. Validation experiments are indicated in relevant tissues. Randomised clinical studies that test the invariant 1.1 RBE allocation against higher values in late reacting tissues, and lower tumour RBE values in the case of radiosensitive tumours, are also indicated.

摘要

尽管质子治疗(PBT)的应用越来越广泛,但几项系统文献综述表明,临床结果的改善有限,出版物大多侧重于最近的技术发展。缺乏随机对照研究也阻碍了许多肿瘤学家和决策者对 PBT 的接受。质子治疗仍存在两个重要的不确定性,即:(1)布拉格峰位置(BPP)的准确性和可重复性;(2)不同组织和肿瘤以及不同剂量的相对生物效应(RBE)的认识不精确。不正确的 BPP 将改变剂量、线性能量传递(LET)和 RBE,从而降低肿瘤控制率并增加毒性。这些相互关系在 ICRU 靶区定义方面进行了定性讨论。国际上公认的质子 RBE 为 1.1,这是基于不太可能揭示人体中完整 RBE 范围的测定和剂量范围。人类(或动物)大脑、脊柱、肾脏、肝脏、肠道等部位的 RBE 值尚不清楚。基于 Belli 等人和其他作者的数据,描述了一种用于估算质子 RBE 值的简单效率模型,该模型允许 α 和 β 随 LET 线性增加,梯度使用饱和模型从低 LET α 和 β 放射敏感性参数输入值估计,随着剂量的增加,RBE 降低。为了改善结果,需要 3-D 剂量-LET-RBE 和生物有效性图谱。在相关组织中需要进行验证实验。也需要进行随机临床试验,以测试在晚期反应组织中较高的不变 1.1 RBE 分配值,以及在敏感肿瘤的情况下较低的肿瘤 RBE 值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6511/4381269/58a17b85ddca/cancers-07-00460-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验