Jones B
a Gray Laboratory , CRUK/MRC Oxford Oncology Institute, The University of Oxford , Oxford , UK.
Acta Oncol. 2017 Nov;56(11):1374-1378. doi: 10.1080/0284186X.2017.1343496. Epub 2017 Aug 18.
To better estimate relative biological effectiveness (RBE) in therapeutic proton beams by using a modeled approach, in order to improve their clinical safety and effectiveness.
Concerns exist about the 1.1 RBE used in proton therapy, since it may lead to unintentional over- and under-dosage in patients and so lead to unexpected clinical outcomes. Late reacting normal tissues (with low α/β values), might be overdosed if RBE >1.1; very radiosensitive tumors (with high α/β), might be under-dosed if RBE <1.1. Some physicists recommend ignoring RBE in favor of a LET × dose product to predict effects.
Extensive linear-quadratic based modeling is scaled between a standard hospital megavoltage photon reference radiation (low LET of 0.22 keV μm) α and β values and their values at higher LETs, representative of the middle and end of the SOBPs. A previously published energy-efficiency model provide RBE estimates for different α/β (2-27 Gy). The concept of using a LET × dose product is assessed by comparing it with surviving fraction and the equivalent dose in 2 Gy fractions (EQD-2).
Low α/β value biosystems have the widest RBE ranges with dose per fraction changes and increasing LET, often above 1.1 even within the SOBP LET range, with lower values at higher dose per fraction. Highly radiosensitive tumors (α/β 10-27 Gy) have the lowest RBEs, often below 1.1, and are not fraction-sensitive. RBE's generally increase with LET, so curtailment of LET in normal tissues is important. The LET × dose product is insufficiently discriminating when compared with surviving fraction and biological effective dose (BED) or EQD-2.
An overall research framework is suggested. Proton therapy advantages will only be fully realized if reasonably correct RBE values are used.
通过使用一种建模方法来更好地估计治疗性质子束的相对生物效应(RBE),以提高其临床安全性和有效性。
人们对质子治疗中使用的1.1的RBE存在担忧,因为这可能导致患者出现无意的剂量过量和不足,从而导致意外的临床结果。晚期反应正常组织(α/β值低),如果RBE>1.1可能会接受过量照射;非常放射敏感的肿瘤(α/β值高),如果RBE<1.1可能会接受不足剂量照射。一些物理学家建议忽略RBE,而采用线性能量传递(LET)×剂量乘积来预测效应。
基于广泛的线性二次模型在标准医院兆伏级光子参考辐射(低LET为0.22keV/μm)的α和β值与其在较高LET值(代表扩展布拉格峰的中部和末端)之间进行缩放。一个先前发表的能量效率模型提供了不同α/β(2 - 27Gy)的RBE估计值。通过将其与存活分数和2Gy分次剂量的等效剂量(EQD - 2)进行比较,评估使用LET×剂量乘积的概念。
低α/β值生物系统的RBE范围随分次剂量变化和LET增加而最宽,即使在扩展布拉格峰LET范围内通常也高于1.1,在较高分次剂量时数值较低。高放射敏感性肿瘤(α/β为10 - 27Gy)的RBE最低,通常低于1.1,且对分次不敏感。RBE通常随LET增加,因此限制正常组织中的LET很重要。与存活分数和生物有效剂量(BED)或EQD - 2相比,LET×剂量乘积的区分能力不足。
提出了一个总体研究框架。只有使用合理正确的RBE值,质子治疗的优势才能得到充分发挥。