Pinkas Jiří, Gyepes Róbert, Císařová Ivana, Kubišta Jiří, Horáček Michal, Mach Karel
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
Dalton Trans. 2015 Apr 28;44(16):7276-91. doi: 10.1039/c5dt00351b.
The titanocene-ethene complex [Ti(II)(η(2)-C2H4)(η(5)-C5Me5)2] (1) with simple internal alkynes R(1)C≡CR(2) gives complexes [Ti(II)(η(2)-R(1)C≡CR(2))(η(5)-C5Me5)2] {R(1), R(2): Ph, Ph (3), Ph, Me (4), Me, SiMe3 (5), Ph, SiMe3 (6), t-Bu, SiMe3 (7), and SiMe3, SiMe3 (8). In contrast, alkynes with R(1) = Me and R(2) = t-Bu or i-Pr afford allene complexes [Ti(II)(η(2)-CH2=C=CHR(2))(η(5)-C5Me5)2] (11) and (12), whereas for R(2) = Et a mixture of alkyne complex (13A) and minor allene (13) is obtained. Crystal structures of 4, 6, 7 and 11 have been determined; the latter structure proved the back-bonding interaction of the allene terminal double bond. Only the synthesis of 8 from 1 was inefficient because the equilibrium constant for the reaction [1] + [Me3SiC≡CSiMe3] ⇌ [8] + [C2H4] approached 1. Compound 9 (R(1), R(2): Me), not obtainable from 1, together with compounds 3–6 and 10 (R(1), R(2): Et) were also prepared by alkyne exchange with 8, however this reaction did not take place in attempts to obtain 7. Compounds 1 and 3–9 display the longest-wavelength electronic absorption band in the range 670-940 nm due to the HOMO → LUMO transition. The assignment of the first excitation to be of predominantly a b2 → a1 transition was confirmed by DFT calculations. The calculated first excitation energies for 3–9 followed the order of hypsochromic shifts of the absorption band relative to 8 that were induced by acetylene substituents: Me > Ph ≫ SiMe3. Computational results have also affirmed the back-bonding nature in the alkyne-to-metal coordination.
二茂钛 - 乙烯配合物[Ti(II)(η(2)-C2H4)(η(5)-C5Me5)2] (1) 与简单的内炔R(1)C≡CR(2)反应生成配合物[Ti(II)(η(2)-R(1)C≡CR(2))(η(5)-C5Me5)2] {R(1), R(2)分别为:Ph, Ph (3), Ph, Me (4), Me, SiMe3 (5), Ph, SiMe3 (6), t-Bu, SiMe3 (7), 以及SiMe3, SiMe3 (8)}。相比之下,R(1) = Me且R(2) = t-Bu或i-Pr的炔烃会生成丙二烯配合物[Ti(II)(η(2)-CH2=C=CHR(2))(η(5)-C5Me5)2] (11) 和 (12),而当R(2) = Et时,会得到炔烃配合物(13A)和少量丙二烯(13)的混合物。已测定了4、6、7和11的晶体结构;后者的结构证明了丙二烯末端双键的反馈键相互作用。仅由1合成8的效率不高,因为反应[1] + [Me3SiC≡CSiMe3] ⇌ [8] + [C2H4]的平衡常数接近1。化合物9 (R(1), R(2): Me)无法由1制得,它与化合物3 - 6以及10 (R(1), R(2): Et) 也通过与8进行炔烃交换反应制备得到,然而尝试制备7时该反应未发生。化合物1以及3 - 9由于HOMO → LUMO跃迁在670 - 940 nm范围内显示出最长波长的电子吸收带。通过DFT计算证实了首次激发主要为b2 → a1跃迁的归属。3 - 9的计算首次激发能遵循由乙炔取代基引起的相对于8的吸收带紫移顺序:Me > Ph ≫ SiMe3。计算结果也证实了炔烃与金属配位中的反馈键性质。