Suppr超能文献

估计发声 repertoire 的大小就像收集优惠券:一个信号丰度存在异质性的理论框架。

Estimating vocal repertoire size is like collecting coupons: a theoretical framework with heterogeneity in signal abundance.

作者信息

Kershenbaum Arik, Freeberg Todd M, Gammon David E

机构信息

National Institute for Mathematical and Biological Synthesis, Knoxville, TN, USA; Department of Zoology, University of Cambridge, Cambridge, England.

Department of Psychology, University of Tennessee, Knoxville, TN, USA.

出版信息

J Theor Biol. 2015 May 21;373:1-11. doi: 10.1016/j.jtbi.2015.03.009. Epub 2015 Mar 16.

Abstract

Vocal repertoire size is an important behavioural measure in songbirds and mammals with complex vocal communication systems, and has traditionally been used as an indicator of individual fitness, cognitive ability, and social structure. Estimates of asymptotic repertoire size have typically been made using curve fitting techniques. However, the exponential model usually applied in these techniques has never been provided with a theoretical justification based on probability theory, and the model has led to inaccurate estimates. We derived the precise expression for the expected number of distinct signal types observed for a fixed sampling effort: a variation of what is known in the statistical literature as the "Coupon Collector׳s problem". We used empirical data from three species (northern mockingbird, Carolina chickadee, and rock hyrax) to assess the performance of the Coupon Collector model compared to commonly used techniques, such as exponential fitting and repertoire enumeration, and also tested the different models against simulated artificial data sets with the statistical properties of the empirical data. We found that when signal probabilities are dissimilar, the Coupon Collector model provides far more accurate estimates of repertoire size than traditional techniques. Enumeration and exponential curve fitting greatly underestimated repertoire size, despite appearing to have reached saturation. Application of the Coupon Collector model can generate more accurate estimates of repertoire size than the commonly used exponential model of repertoire discovery, and could go a long way towards re-establishing repertoire size as a useful indicator in animal communication research.

摘要

发声曲目大小是具有复杂发声交流系统的鸣禽和哺乳动物的一项重要行为指标,传统上一直被用作个体适应性、认知能力和社会结构的指标。渐近曲目大小的估计通常使用曲线拟合技术。然而,这些技术中通常应用的指数模型从未基于概率论得到理论上的证明,并且该模型导致了不准确的估计。我们推导出了在固定采样努力下观察到的不同信号类型预期数量的精确表达式:这是统计文献中已知的“优惠券收集问题”的一种变体。我们使用来自三个物种(北方嘲鸫、卡罗来纳山雀和岩蹄兔)的经验数据,与常用技术(如指数拟合和曲目枚举)相比,评估优惠券收集模型的性能,并且还针对具有经验数据统计特性的模拟人工数据集测试了不同模型。我们发现,当信号概率不同时,优惠券收集模型比传统技术能提供更准确的曲目大小估计。枚举和指数曲线拟合大大低估了曲目大小,尽管看起来已经达到饱和。与常用的曲目发现指数模型相比,优惠券收集模型的应用可以生成更准确的曲目大小估计,并且在将曲目大小重新确立为动物交流研究中的有用指标方面可以大有帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验