Suppr超能文献

一种用于对声学多样性进行分类和量化的机器学习方法。

A machine learning approach for classifying and quantifying acoustic diversity.

作者信息

Keen Sara C, Odom Karan J, Webster Michael S, Kohn Gregory M, Wright Timothy F, Araya-Salas Marcelo

机构信息

Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA.

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14850, USA.

出版信息

Methods Ecol Evol. 2021 Jul;12(7):1213-1225. doi: 10.1111/2041-210x.13599. Epub 2021 Mar 25.

Abstract
  1. Assessing diversity of discretely varying behavior is a classical ethological problem. In particular, the challenge of calculating an individuals' or species' vocal repertoire size is often an important step in ecological and behavioral studies, but a reproducible and broadly applicable method for accomplishing this task is not currently available. 2. We offer a generalizable method to automate the calculation and quantification of acoustic diversity using an unsupervised random forest framework. We tested our method using natural and synthetic datasets of known repertoire sizes that exhibit standardized variation in common acoustic features as well as in recording quality. We tested two approaches to estimate acoustic diversity using the output from unsupervised random forest analyses: (i) cluster analysis to estimate the number of discrete acoustic signals (e.g., repertoire size) and (ii) an estimation of acoustic area in acoustic feature space, as a proxy for repertoire size. 3. We find that our unsupervised analyses classify acoustic structure with high accuracy. Specifically, both approaches accurately estimate element diversity when repertoire size is small to intermediate (5-20 unique elements). However, for larger datasets (20-100 unique elements), we find that calculating the size of the area occupied in acoustic space is a more reliable proxy for estimating repertoire size. 4. We conclude that our implementation of unsupervised random forest analysis offers a generalizable tool that researchers can apply to classify acoustic structure of diverse datasets. Additionally, output from these analyses can be used to compare the distribution and diversity of signals in acoustic space, creating opportunities to quantify and compare the amount of acoustic variation among individuals, populations, or species in a standardized way. We provide R code and examples to aid researchers interested in using these techniques.
摘要
  1. 评估离散变化行为的多样性是一个经典的动物行为学问题。特别是,计算个体或物种的发声 repertoire 大小的挑战通常是生态和行为研究中的重要一步,但目前尚无一种可重复且广泛适用的方法来完成此任务。2. 我们提供了一种可推广的方法,使用无监督随机森林框架自动计算和量化声学多样性。我们使用已知 repertoire 大小的自然和合成数据集测试了我们的方法,这些数据集在常见声学特征以及录音质量方面呈现出标准化变化。我们测试了两种使用无监督随机森林分析输出估计声学多样性的方法:(i) 聚类分析以估计离散声学信号的数量(例如,repertoire 大小),以及 (ii) 估计声学特征空间中的声学面积,作为 repertoire 大小的代理。3. 我们发现我们的无监督分析能够高精度地对声学结构进行分类。具体而言,当 repertoire 大小为小到中等(5 - 20 个独特元素)时,两种方法都能准确估计元素多样性。然而,对于更大的数据集(20 - 100 个独特元素),我们发现计算声学空间中所占面积的大小是估计 repertoire 大小的更可靠代理。4. 我们得出结论,我们的无监督随机森林分析实现提供了一种可推广的工具,研究人员可应用于对各种数据集的声学结构进行分类。此外,这些分析的输出可用于比较声学空间中信号的分布和多样性,为以标准化方式量化和比较个体、种群或物种之间的声学变化量创造机会。我们提供了 R 代码和示例,以帮助对使用这些技术感兴趣的研究人员。

相似文献

1
A machine learning approach for classifying and quantifying acoustic diversity.
Methods Ecol Evol. 2021 Jul;12(7):1213-1225. doi: 10.1111/2041-210x.13599. Epub 2021 Mar 25.
2
A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status.
Genome Med. 2015 May 28;7(1):49. doi: 10.1186/s13073-015-0169-8. eCollection 2015.
3
Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
Front Bioeng Biotechnol. 2015 Sep 17;3:141. doi: 10.3389/fbioe.2015.00141. eCollection 2015.
4
Improving the workflow to crack Small, Unbalanced, Noisy, but Genuine (SUNG) datasets in bioacoustics: The case of bonobo calls.
PLoS Comput Biol. 2023 Apr 13;19(4):e1010325. doi: 10.1371/journal.pcbi.1010325. eCollection 2023 Apr.
5
Estimation of T-cell repertoire diversity and clonal size distribution by Poisson abundance models.
J Immunol Methods. 2010 Feb 28;353(1-2):124-37. doi: 10.1016/j.jim.2009.11.009. Epub 2009 Nov 18.
6
Contextual flexibility in the vocal repertoire of an Amazon parrot.
Front Zool. 2016 Aug 26;13(1):40. doi: 10.1186/s12983-016-0169-6. eCollection 2016.
7
Estimating animal population density using passive acoustics.
Biol Rev Camb Philos Soc. 2013 May;88(2):287-309. doi: 10.1111/brv.12001. Epub 2012 Nov 29.
10
Unsupervised discovery of family specific vocal usage in the Mongolian gerbil.
bioRxiv. 2024 Sep 4:2023.03.11.532197. doi: 10.1101/2023.03.11.532197.

引用本文的文献

1
The Temporal Organization of Learned Vocal Behavior Is Predicted by Species Rather Than Experience.
J Neurosci. 2025 Mar 12;45(11):e0576242025. doi: 10.1523/JNEUROSCI.0576-24.2025.
2
Widespread cultural change in declining populations of Amazon parrots.
Proc Biol Sci. 2024 Aug;291(2029):20240659. doi: 10.1098/rspb.2024.0659. Epub 2024 Aug 21.
3
Vocal repertoire and individuality in the plains zebra ().
R Soc Open Sci. 2024 Jul 10;11(7):240477. doi: 10.1098/rsos.240477. eCollection 2024 Jul.
4
Individual and ecological heterogeneity promote complex communication in social vertebrate group decisions.
Philos Trans R Soc Lond B Biol Sci. 2024 Jul 8;379(1905):20230204. doi: 10.1098/rstb.2023.0204. Epub 2024 May 20.
5
Soundscape Characterization Using Autoencoders and Unsupervised Learning.
Sensors (Basel). 2024 Apr 18;24(8):2597. doi: 10.3390/s24082597.
6
Many morphs: Parsing gesture signals from the noise.
Behav Res Methods. 2024 Oct;56(7):6520-6537. doi: 10.3758/s13428-024-02368-6. Epub 2024 Mar 4.
7
Individual identity information persists in learned calls of introduced parrot populations.
PLoS Comput Biol. 2023 Jul 27;19(7):e1011231. doi: 10.1371/journal.pcbi.1011231. eCollection 2023 Jul.
8
GesturalOrigins: A bottom-up framework for establishing systematic gesture data across ape species.
Behav Res Methods. 2024 Feb;56(2):986-1001. doi: 10.3758/s13428-023-02082-9. Epub 2023 Mar 15.
10
Toward a Computational Neuroethology of Vocal Communication: From Bioacoustics to Neurophysiology, Emerging Tools and Future Directions.
Front Behav Neurosci. 2021 Dec 20;15:811737. doi: 10.3389/fnbeh.2021.811737. eCollection 2021.

本文引用的文献

1
Soundgen: An open-source tool for synthesizing nonverbal vocalizations.
Behav Res Methods. 2019 Apr;51(2):778-792. doi: 10.3758/s13428-018-1095-7.
2
Cooperative breeding influences the number and type of vocalizations in avian lineages.
Proc Biol Sci. 2017 Dec 13;284(1868). doi: 10.1098/rspb.2017.1508.
3
Song evolution, speciation, and vocal learning in passerine birds.
Evolution. 2017 Mar;71(3):786-796. doi: 10.1111/evo.13159. Epub 2017 Jan 9.
4
Characterizing Vocal Repertoires--Hard vs. Soft Classification Approaches.
PLoS One. 2015 Apr 27;10(4):e0125785. doi: 10.1371/journal.pone.0125785. eCollection 2015.
5
Estimating vocal repertoire size is like collecting coupons: a theoretical framework with heterogeneity in signal abundance.
J Theor Biol. 2015 May 21;373:1-11. doi: 10.1016/j.jtbi.2015.03.009. Epub 2015 Mar 16.
7
A test of multiple hypotheses for the function of call sharing in female budgerigars, .
Behav Ecol Sociobiol. 2014 Jan 1;68(1):145-161. doi: 10.1007/s00265-013-1631-5.
8
Potential trade-off between vocal ornamentation and spatial ability in a songbird.
Biol Lett. 2013 May 22;9(4):20130344. doi: 10.1098/rsbl.2013.0344. Print 2013 Aug 23.
9
Evolutionary divergence in acoustic signals: causes and consequences.
Trends Ecol Evol. 2013 Mar;28(3):156-66. doi: 10.1016/j.tree.2012.10.002. Epub 2012 Nov 7.
10
Information theoretical approaches to chick-a-dee calls of Carolina chickadees (Poecile carolinensis).
J Comp Psychol. 2012 Feb;126(1):68-81. doi: 10.1037/a0024906. Epub 2011 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验