Ribot Josep Casamada, Chatterjee Anushree, Nagpal Prashant
†Department of Chemical and Biological Engineering, ‡Renewable and Sustainable Energy Institute, §BioFrontiers Institute, and ∥Materials Science and Engineering, University of Colorado, Boulder, Colorado, 80309, United States.
J Phys Chem B. 2015 Apr 16;119(15):4968-74. doi: 10.1021/acs.jpcb.5b01403. Epub 2015 Apr 1.
Several nanoelectronic techniques have been explored to distinguish the sequence of nucleic acids in DNA macromolecules. Identification of unique electronic signatures using nanopore conductance, tunneling spectroscopy, or other nanoelectronic techniques depends on electronic states of the DNA nucleotides. While several experimental and computational studies have focused on interaction of nucleobases with different substrates, the effect of nucleic acid biochemistry on its electronic properties has been largely unexplored. Here, we present correlated measurements of frontier molecular orbitals and higher-order electronic states for four DNA nucleobases (adenine, cytosine, thymine, and guanine), and first-principle quantum chemical density functional theoretical (DFT) computations. Using different pH conditions in our experiments, we show that small changes in the biochemical state of these nucleic acids strongly affect the intrinsic electronic structure, measured using scanning tunneling spectroscopy (STS). In our experimental measurements and computations, significant differences were observed between the position of frontier orbitals and higher-energy states between protonated and unprotonated nucleic acids, isomers, and different keto-enol tautomer's formed in these nucleotides, leading to their facile identification. Furthermore, we show unique "electronic fingerprints" for all nucleotides (A, G, T, C) using STS, with most distinct states identified at acidic pH. These results can have important implications for identification of nucleic acid sequences in DNA molecules using a high-throughput nanoelectronic identification technique.
人们已经探索了几种纳米电子技术来区分DNA大分子中核酸的序列。使用纳米孔电导、隧道光谱或其他纳米电子技术识别独特的电子特征取决于DNA核苷酸的电子状态。虽然一些实验和计算研究集中在核碱基与不同底物的相互作用上,但核酸生物化学对其电子性质的影响在很大程度上尚未得到探索。在这里,我们展示了对四种DNA核碱基(腺嘌呤、胞嘧啶、胸腺嘧啶和鸟嘌呤)的前沿分子轨道和高阶电子态的相关测量,以及第一性原理量子化学密度泛函理论(DFT)计算。在我们的实验中使用不同的pH条件,我们表明这些核酸生化状态的微小变化会强烈影响使用扫描隧道光谱(STS)测量的内在电子结构。在我们的实验测量和计算中,观察到质子化和未质子化的核酸、异构体以及这些核苷酸中形成的不同酮-烯醇互变异构体之间的前沿轨道位置和高能态存在显著差异,从而便于对它们进行识别。此外,我们使用STS展示了所有核苷酸(A、G、T、C)独特的“电子指纹”,在酸性pH下识别出的状态最为明显。这些结果对于使用高通量纳米电子识别技术识别DNA分子中的核酸序列可能具有重要意义。