Vaisseau X, Debayle A, Honrubia J J, Hulin S, Morace A, Nicolaï Ph, Sawada H, Vauzour B, Batani D, Beg F N, Davies J R, Fedosejevs R, Gray R J, Kemp G E, Kerr S, Li K, Link A, McKenna P, McLean H S, Mo M, Patel P K, Park J, Peebles J, Rhee Y J, Sorokovikova A, Tikhonchuk V T, Volpe L, Wei M, Santos J J
Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France.
ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain.
Phys Rev Lett. 2015 Mar 6;114(9):095004. doi: 10.1103/PhysRevLett.114.095004. Epub 2015 Mar 4.
Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11} A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.
在超高电子束电流密度超过2×10¹¹ A/cm²(时间平均)的情况下,测量了相对论电子束在温稠密铝中传输时的能量损失。样品通过冲击压缩加热。与未驱动的冷固体靶相比,不同初始电阻率和瞬态电阻率(在电子传输过程中靶加热时)的作用在实验数据中可直接观察到,并通过一组全面的模拟得以再现,这些模拟描述了冲击压缩、电子束产生和传输的流体动力学。我们测量到,与相同面质量的冷固体样品相比,温稠密样品中电子电阻能量损失增加了19%。