Roux Christian, Aligny Caroline, Lesueur Céline, Girault Virginie, Brunel Valery, Ramdani Yasmina, Genty Damien, Driouich Azeddine, Laquerrière Annie, Marret Stéphane, Brasse-Lagnel Carole, Gonzalez Bruno J, Bekri Soumeya
Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France.
Region-Inserm Team NeoVasc ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, Normandy University, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
Exp Neurol. 2015 May;267:177-93. doi: 10.1016/j.expneurol.2015.02.037. Epub 2015 Mar 17.
In neonates, excitotoxicity is a major process involved in hypoxic-ischemic brain lesions, and several research groups have suggested the use of NMDA antagonists for neuroprotection. However, despite their clinical interest, there is more and more evidence suggesting that, in the immature brain, these molecules exert deleterious actions on migrating GABAergic interneurons by suppressing glutamatergic trophic inputs. Consequently, preventing the side effects of NMDA antagonists would be therapeutically useful. Because macroautophagy is involved in the adaptive response to trophic deprivation, the aim of the present study was to investigate the impact of autophagy modulators on the MK801-induced death of immature GABAergic interneurons and to characterize the crosstalk between autophagic and apoptotic mechanisms in this cell type. Ex vivo, using cortical slices from NMRI and Gad67-GFP mice, we show that blockade of the NMDA receptor results in an accumulation of autophagosomes due to the disruption of the autophagic flux. This effect precedes the activation of the mitochondrial apoptotic pathway, and the degeneration of immature GABAergic neurons present in developing cortical layers II-IV and is prevented by 3-MA, an autophagy inhibitor. In contrast, modulators of autophagy (3-MA, rapamycin) do not interfere with the anti-excitotoxic and neuroprotective effect of MK801 observed in deep layers V and VI. In vivo, 3-MA blocks the rapid increase in caspase-3 cleavage induced by the blockade of NMDA receptors and prevents the resulting long-term decrease in Gad67-GFP neurons in layers II-IV. Together, these data suggest that, in the developing cortex, the suppression of glutamatergic inputs through NMDA receptor inhibition results in the impairment of the autophagic flux and the subsequent switch to apoptotic death of immature GABAergic interneurons. The concomitant inhibition of autophagy prevents this pro-apoptotic action of the NMDA blocker and favors the long-term rescue of GABAergic interneurons without interfering with its neuroprotective actions. The use of autophagy modulators in the developing brain would create new opportunities to prevent the side effects of NMDA antagonists used for neuroprotection or anesthesia.
在新生儿中,兴奋性毒性是缺氧缺血性脑损伤涉及的主要过程,几个研究小组已建议使用N-甲基-D-天冬氨酸(NMDA)拮抗剂进行神经保护。然而,尽管它们具有临床应用价值,但越来越多的证据表明,在未成熟大脑中,这些分子通过抑制谷氨酸能营养输入,对迁移的γ-氨基丁酸(GABA)能中间神经元产生有害作用。因此,预防NMDA拮抗剂的副作用在治疗上是有益的。由于巨自噬参与了对营养剥夺的适应性反应,本研究的目的是探讨自噬调节剂对MK801诱导的未成熟GABA能中间神经元死亡的影响,并表征这种细胞类型中自噬和凋亡机制之间的相互作用。在体外,使用来自NMRI和Gad67-绿色荧光蛋白(GFP)小鼠的皮质切片,我们发现NMDA受体的阻断会导致自噬通量的破坏,从而导致自噬体的积累。这种效应先于线粒体凋亡途径的激活以及发育中的皮质II-IV层中未成熟GABA能神经元的退化,并且可被自噬抑制剂3-甲基腺嘌呤(3-MA)阻止。相反,自噬调节剂(3-MA、雷帕霉素)不会干扰在V层和VI层中观察到的MK801的抗兴奋性毒性和神经保护作用。在体内,3-MA可阻断由NMDA受体阻断诱导的半胱天冬酶-3切割的快速增加,并防止II-IV层中Gad67-GFP神经元的长期减少。总之,这些数据表明,在发育中的皮质中,通过抑制NMDA受体来抑制谷氨酸能输入会导致自噬通量受损,随后未成熟GABA能中间神经元转变为凋亡性死亡。自噬的同时抑制可防止NMDA阻滞剂的这种促凋亡作用,并有利于GABA能中间神经元的长期挽救,而不会干扰其神经保护作用。在发育中的大脑中使用自噬调节剂将为预防用于神经保护或麻醉的NMDA拮抗剂的副作用创造新的机会。