Suppr超能文献

基于多尺度纹理特征提取和粒子群优化的乳腺 X 线摄影假阳性减少模型选择。

Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.

机构信息

Communications, Electronics and Computer Engineering Department, Tafila Technical University, Tafila 66110, Jordan.

Department of Computer Science and Medical Equipment, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland.

出版信息

Comput Med Imaging Graph. 2015 Dec;46 Pt 2:95-107. doi: 10.1016/j.compmedimag.2015.02.005. Epub 2015 Feb 24.

Abstract

The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique.

摘要

当前的乳腺计算机辅助检测(CAD)系统面临的主要问题是假阳性率高,以及由此导致的不必要的乳腺活检数量增加。降低假阳性率不仅是对肿块的要求,也是对目前用于临床的钙化 CAD 系统的要求。本文分别针对减少所有病变和肿块检测中的假阳性数量的两个问题。首先,使用基于小波和灰度共生矩阵的几种多尺度纹理描述符分析了乳腺组织的纹理模式。本文解决的第二个问题是参数选择和性能优化。为此,我们采用基于粒子群优化(PSO)的模型选择过程,选择最具判别力的纹理特征,并增强基于支持向量机(SVM)分类器的监督学习阶段的泛化能力。为了评估所提出的方法,我们使用了两组可疑的乳腺 X 光片区域。第一组来自数字筛查乳腺数据库(DDSM),包含 1494 个区域(1000 个正常和 494 个异常样本)。第二组可疑区域来自乳腺图像分析学会数据库(mini-MIAS),包含 315 个(207 个正常和 108 个异常)样本。来自两个数据集的结果都证明了使用基于 PSO 的模型选择优化分类器超参数和参数的有效性。此外,所获得的结果表明了所提出的纹理特征的有前景的性能,特别是基于小波图像表示技术的共生矩阵的那些特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验