Leib Elisabeth W, Vainio Ulla, Pasquarelli Robert M, Kus Jonas, Czaschke Christian, Walter Nils, Janssen Rolf, Müller Martin, Schreyer Andreas, Weller Horst, Vossmeyer Tobias
Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, D-20146 Hamburg, Germany.
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
J Colloid Interface Sci. 2015 Jun 15;448:582-92. doi: 10.1016/j.jcis.2015.02.049. Epub 2015 Feb 27.
Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia.
Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD.
Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles.
通过溶胶 - 凝胶合成法制备的氧化锆微粒在光子应用方面具有巨大潜力。为此,确定能够对尺寸均匀性进行可重复控制的合成方法很重要。热循环过程中的相变会使颗粒解体。因此,了解驱动这些转变的参数对于实现高温应用至关重要。颗粒形态预计会影响颗粒的加工性能和稳定性。氧化钇掺杂应能提高颗粒的热稳定性,就像在块状氧化锆中那样。
使用脂肪酸稳定剂通过改进的溶胶 - 凝胶方法合成了氧化锆和钇稳定氧化锆颗粒。将颗粒加热至1500°C,并通过扫描电子显微镜(SEM)、非原位X射线衍射(XRD)和高能原位XRD监测结构和形态变化。
根据改进的溶胶 - 凝胶方法合成的氧化锆颗粒(直径0.4 - 4.3μm,标准偏差5 - 10%)具有显著改善的单分散性。合成的无定形颗粒在约450°C转变为四方相,体积减少高达约75%,然后在从约650°C加热到850°C后转变为单斜相。由于晶粒生长,亚微米颗粒在约850°C解体,微米颗粒在约1200°C解体。原位XRD表明,从无定形到四方相的转变伴随着微观应变的缓解,从四方相到单斜相的转变与四方晶粒尺寸相关。早期结晶和较小的初始晶粒尺寸(取决于用于颗粒合成的前驱体)与更高的稳定性一致。氧化钇掺杂减少了晶粒生长,稳定了四方相,并显著提高了颗粒的热稳定性。