Snow-Lisy Devon C, Sabanegh Edmund S, Samplaski Mary K, Labhasetwar Vinod
Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Engineering, Lerner Research Institute (VL), Cleveland Clinic, Cleveland, Ohio.
Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Engineering, Lerner Research Institute (VL), Cleveland Clinic, Cleveland, Ohio.
J Urol. 2015 Oct;194(4):1155-61. doi: 10.1016/j.juro.2015.03.076. Epub 2015 Mar 18.
Nanoparticles, which are submicroscopic particles typically ranging from 100 to 300 nm, are interesting as potential treatment of testicular disorders because they can be engineered to allow delivery to privileged tissues, such as across the blood-brain barrier or theoretically the blood-testis barrier. We compared the effects of anatomical and/or ligand targeting on testicular nanoparticle uptake in a rat model.
A total of 48 rats were divided into 6 groups, including a control group and groups that received intra-arterial injection of unconjugated nanoparticles with and without saline flush, intravenous injection of unconjugated nanoparticles, intra-arterial injection of follicle stimulating hormone conjugated nanoparticles, intravenous injection of follicle stimulating hormone conjugated nanoparticles and intra-arterial injection of transactivating transcriptor conjugated nanoparticles. A dose response curve was assessed for intra-arterially injected unconjugated nanoparticles. Using high performance liquid chromatography and histological analysis we determined nanoparticle uptake by the testicle at 4 hours.
Intra-arterial injection resulted in a 5.8-fold increase in uptake compared to intravenous injection at 35 mg/kg of unconjugated nanoparticles (3.7 vs 0.6 μg nanoparticles per gm testicle, p = 0.04). Anatomical targeting failed to improve testicular uptake in FSH conjugated nanoparticles (intra-arterial vs intravenous injection 0.33 vs 0.38 μg FSH nanoparticles per gm testicular tissue, p = 0.73). On fluorescence microscopy nanoparticles were noted in the testicular interstitium and seminiferous tubules, and absent from the testicular vasculature.
Arterial injection for anatomical targeting of nanoparticles to the testis is feasible, improves unconjugated nanoparticle delivery to testicular tissue and enables nanoparticles to cross the gonadal vascular endothelium and the blood-testis barrier.
纳米颗粒是通常直径在100至300纳米之间的亚微观颗粒,作为睾丸疾病的潜在治疗手段很受关注,因为它们可以被设计成能够递送至特殊组织,比如穿过血脑屏障,或者理论上穿过血睾屏障。我们在大鼠模型中比较了解剖学和/或配体靶向对睾丸纳米颗粒摄取的影响。
总共48只大鼠被分为6组,包括一个对照组以及接受以下处理的组:动脉内注射未缀合纳米颗粒且有或无生理盐水冲洗、静脉内注射未缀合纳米颗粒、动脉内注射促卵泡激素缀合纳米颗粒、静脉内注射促卵泡激素缀合纳米颗粒以及动脉内注射反式激活转录因子缀合纳米颗粒。评估动脉内注射未缀合纳米颗粒的剂量反应曲线。使用高效液相色谱法和组织学分析,我们在4小时时测定睾丸对纳米颗粒的摄取情况。
在35毫克/千克未缀合纳米颗粒时,动脉内注射导致的摄取量比静脉内注射增加了5.8倍(每克睾丸中纳米颗粒分别为3.7微克和0.6微克,p = 0.04)。解剖学靶向未能改善促卵泡激素缀合纳米颗粒的睾丸摄取(动脉内注射与静脉内注射相比,每克睾丸组织中促卵泡激素纳米颗粒分别为0.33微克和0.38微克,p = 0.73)。在荧光显微镜下,纳米颗粒见于睾丸间质和生精小管,而不见于睾丸血管系统。
通过动脉注射将纳米颗粒靶向睾丸进行解剖学定位是可行的,可改善未缀合纳米颗粒向睾丸组织的递送,并使纳米颗粒能够穿过性腺血管内皮和血睾屏障。