Suppr超能文献

内皮细胞之间的紧密连接:纳米颗粒与血管之间的相互作用。

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels.

作者信息

Zhang Yue, Yang Wan-Xi

机构信息

The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.

出版信息

Beilstein J Nanotechnol. 2016 May 6;7:675-84. doi: 10.3762/bjnano.7.60. eCollection 2016.

Abstract

Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens)) proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs.

摘要

由于纳米颗粒目前被广泛应用于食品添加剂、化妆品及其他行业,尤其是医学治疗和诊断领域,我们在此探讨纳米颗粒是否会对人体健康造成多种不良影响。在本综述中,基于对纳米毒性的研究,我们主要从几个方面讨论纳米颗粒对血管的负面影响,以及纳米颗粒穿透血管内皮细胞层的潜在机制,这些内皮细胞层是紧密连接蛋白(闭合蛋白、封闭蛋白和闭锁小带蛋白)磷酸化、氧化应激和剪切应力的发生部位。我们提出纳米颗粒的存在与紧密连接调节之间存在联系,这可能是纳米颗粒穿透内皮细胞层进而影响其他组织和器官的关键途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce8/4902068/230588194b67/Beilstein_J_Nanotechnol-07-675-g002.jpg

相似文献

1
Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels.
Beilstein J Nanotechnol. 2016 May 6;7:675-84. doi: 10.3762/bjnano.7.60. eCollection 2016.
2
Cyclic strain-mediated regulation of vascular endothelial occludin and ZO-1: influence on intercellular tight junction assembly and function.
Arterioscler Thromb Vasc Biol. 2006 Jan;26(1):62-8. doi: 10.1161/01.ATV.0000194097.92824.b3. Epub 2005 Nov 3.
4
Glutathione-S-transferase protects against oxidative injury of endothelial cell tight junctions.
Endothelium. 2007 Nov-Dec;14(6):333-43. doi: 10.1080/10623320701746263.
5
No tight junctions in tight junction protein-1 expressing HeLa and fibroblast cells.
Int J Physiol Pathophysiol Pharmacol. 2020 Apr 15;12(2):70-78. eCollection 2020.
6
Distribution of the tight junction-associated protein ZO-1 in circumventricular organs of the CNS.
Brain Res Mol Brain Res. 1994 Feb;21(3-4):235-46. doi: 10.1016/0169-328x(94)90254-2.
9
Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells.
Mol Biol Cell. 2006 Apr;17(4):1922-32. doi: 10.1091/mbc.e05-07-0650. Epub 2006 Jan 25.
10
Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions.
Cell. 2019 Oct 31;179(4):923-936.e11. doi: 10.1016/j.cell.2019.10.011.

引用本文的文献

1
In vivo editing of lung stem cells for durable gene correction in mice.
Science. 2024 Jun 14;384(6701):1196-1202. doi: 10.1126/science.adk9428. Epub 2024 Jun 13.
2
Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles.
Protein Pept Lett. 2024;31(3):209-228. doi: 10.2174/0109298665292469240228064739.
3
Interaction between mitochondrial homeostasis and barrier function in lipopolysaccharide-induced endothelial cell injury.
Int J Exp Pathol. 2023 Dec;104(6):272-282. doi: 10.1111/iep.12495. Epub 2023 Oct 12.
4
Customizing delivery nano-vehicles for precise brain tumor therapy.
J Nanobiotechnology. 2023 Jan 28;21(1):32. doi: 10.1186/s12951-023-01775-9.
5
Putative therapeutic impacts of cardiac CTRP9 in ischaemia/reperfusion injury.
J Cell Mol Med. 2022 Jun;26(11):3120-3132. doi: 10.1111/jcmm.17355. Epub 2022 May 10.
6
Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability.
Front Physiol. 2021 Sep 4;12:714064. doi: 10.3389/fphys.2021.714064. eCollection 2021.
8
Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers.
Sci Rep. 2020 Aug 7;10(1):13320. doi: 10.1038/s41598-020-70148-1.

本文引用的文献

2
3
Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).
Crit Rev Oncol Hematol. 2016 Feb;98:290-301. doi: 10.1016/j.critrevonc.2015.10.004. Epub 2015 Oct 20.
4
Isolation, characterization, interaction of a thiazolekinase (Plasmodium falciparum) with silver nanoparticles.
Int J Biol Macromol. 2015 Aug;79:644-53. doi: 10.1016/j.ijbiomac.2015.05.033. Epub 2015 Jun 3.
5
Cutaneous penetration of soft nanoparticles via photodamaged skin: Lipid-based and polymer-based nanocarriers for drug delivery.
Eur J Pharm Biopharm. 2015 Aug;94:94-105. doi: 10.1016/j.ejpb.2015.05.005. Epub 2015 May 15.
6
Placental claudin expression and its regulation by endogenous sex steroid hormones.
Steroids. 2015 Aug;100:44-51. doi: 10.1016/j.steroids.2015.05.001. Epub 2015 May 14.
7
Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1.
J Control Release. 2015 Jul 28;210:39-47. doi: 10.1016/j.jconrel.2015.05.006. Epub 2015 May 9.
8
Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells.
Toxicol In Vitro. 2015 Aug;29(5):1053-9. doi: 10.1016/j.tiv.2015.03.020. Epub 2015 Apr 7.
9
Anatomical Targeting Improves Delivery of Unconjugated Nanoparticles to the Testicle.
J Urol. 2015 Oct;194(4):1155-61. doi: 10.1016/j.juro.2015.03.076. Epub 2015 Mar 18.
10
BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS.
Biotechnol Adv. 2015 Mar-Apr;33(2):277-87. doi: 10.1016/j.biotechadv.2015.02.004. Epub 2015 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验