Suppr超能文献

新型酶功能设计的计算策略

Computational strategies for the design of new enzymatic functions.

作者信息

Świderek K, Tuñón I, Moliner V, Bertran J

机构信息

Departament de Química Física, Universitat de València, 46100 Burjasot, Spain; Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland.

Departament de Química Física, Universitat de València, 46100 Burjasot, Spain.

出版信息

Arch Biochem Biophys. 2015 Sep 15;582:68-79. doi: 10.1016/j.abb.2015.03.013. Epub 2015 Mar 19.

Abstract

In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and Retro-Aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies.

摘要

在本论文中,我们回顾了生物催化剂设计的最新进展,特别强调了从头设计策略。基于三种不同反应(肯普消除反应、狄尔斯-阿尔德反应和逆醛缩酶反应)的研究用于阐述过去几年中取得的不同成功案例。最后,有一部分专门讨论了设计金属酶的特殊情况。总的来说,基于具有量子力学/分子力学势的分子动力学模拟和完全灵活模型的新型且更复杂的工程方案与计算方法之间的相互作用,似乎构成了当前和未来成功设计策略的基石。

相似文献

1
Computational strategies for the design of new enzymatic functions.
Arch Biochem Biophys. 2015 Sep 15;582:68-79. doi: 10.1016/j.abb.2015.03.013. Epub 2015 Mar 19.
2
Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
Adv Protein Chem Struct Biol. 2011;85:81-142. doi: 10.1016/B978-0-12-386485-7.00003-X.
3
A preorganization oriented computational method for de novo design of Kemp elimination enzymes.
Enzyme Microb Technol. 2022 Oct;160:110093. doi: 10.1016/j.enzmictec.2022.110093. Epub 2022 Jul 2.
4
Design of functional metalloproteins.
Nature. 2009 Aug 13;460(7257):855-62. doi: 10.1038/nature08304.
5
Artificial metalloenzymes derived from three-helix bundles.
Curr Opin Chem Biol. 2015 Apr;25:65-70. doi: 10.1016/j.cbpa.2014.12.034. Epub 2015 Jan 8.
6
Use of QM/DMD as a Multiscale Approach to Modeling Metalloenzymes.
Methods Enzymol. 2016;577:319-39. doi: 10.1016/bs.mie.2016.05.018. Epub 2016 Jun 28.
7
Using High-Throughput Molecular Dynamics Simulation to Enhance the Computational Design of Kemp Elimination Enzymes.
J Chem Inf Model. 2023 Feb 27;63(4):1323-1337. doi: 10.1021/acs.jcim.3c00002. Epub 2023 Feb 13.
9
Recent advances in the design and optimization of artificial metalloenzymes.
Curr Opin Chem Biol. 2024 Aug;81:102508. doi: 10.1016/j.cbpa.2024.102508. Epub 2024 Aug 3.
10
Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
Acc Chem Res. 2020 Apr 21;53(4):896-905. doi: 10.1021/acs.accounts.0c00031. Epub 2020 Apr 1.

引用本文的文献

1
Noncanonical Amino Acids in Biocatalysis.
Chem Rev. 2024 Jul 24;124(14):8740-8786. doi: 10.1021/acs.chemrev.4c00120. Epub 2024 Jul 3.
3
Mechanism-Based Redesign of GAP to Activate Oncogenic Ras.
J Am Chem Soc. 2023 Sep 20;145(37):20302-20310. doi: 10.1021/jacs.3c04330. Epub 2023 Sep 8.
4
Biomolecular QM/MM Simulations: What Are Some of the "Burning Issues"?
J Phys Chem B. 2021 Jan 28;125(3):689-702. doi: 10.1021/acs.jpcb.0c09898. Epub 2021 Jan 6.
5
Multiscale computation delivers organophosphorus reactivity and stereoselectivity to immunoglobulin scavengers.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22841-22848. doi: 10.1073/pnas.2010317117. Epub 2020 Aug 28.
6
Bottom-Up Nonempirical Approach To Reducing Search Space in Enzyme Design Guided by Catalytic Fields.
J Chem Theory Comput. 2020 May 12;16(5):3420-3429. doi: 10.1021/acs.jctc.0c00139. Epub 2020 Apr 23.
7
Dissecting the evolvability landscape of the CalB active site toward aromatic substrates.
Sci Rep. 2019 Oct 30;9(1):15588. doi: 10.1038/s41598-019-51940-0.
8
: Computer-Aided Directed Evolution of Enzymes.
IUCrJ. 2017 Jan 1;4(Pt 1):50-64. doi: 10.1107/S2052252516018017.
9
Computational tools for the evaluation of laboratory-engineered biocatalysts.
Chem Commun (Camb). 2016 Dec 22;53(2):284-297. doi: 10.1039/c6cc06055b.
10
Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches.
Annu Rev Biomed Eng. 2016 Jul 11;18:311-28. doi: 10.1146/annurev-bioeng-111215-024421. Epub 2016 Mar 23.

本文引用的文献

1
Novel artificial metalloenzymes by incorporation of metal-binding unnatural amino acids.
Chem Sci. 2015 Jan 1;6(1):770-776. doi: 10.1039/c4sc01525h. Epub 2014 Oct 9.
2
3
Mysteries of metals in metalloenzymes.
Acc Chem Res. 2014 Oct 21;47(10):3110-7. doi: 10.1021/ar500227u. Epub 2014 Sep 10.
4
Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8013-8. doi: 10.1073/pnas.1401073111. Epub 2014 May 20.
5
Computer aided enzyme design and catalytic concepts.
Curr Opin Chem Biol. 2014 Aug;21:56-62. doi: 10.1016/j.cbpa.2014.03.022. Epub 2014 May 8.
6
Computational tools for designing and engineering enzymes.
Curr Opin Chem Biol. 2014 Apr;19:8-16. doi: 10.1016/j.cbpa.2013.12.003. Epub 2013 Dec 31.
7
Recent advances in rational approaches for enzyme engineering.
Comput Struct Biotechnol J. 2012 Oct 22;2:e201209010. doi: 10.5936/csbj.201209010. eCollection 2012.
8
Protein design: toward functional metalloenzymes.
Chem Rev. 2014 Apr 9;114(7):3495-578. doi: 10.1021/cr400458x. Epub 2014 Mar 24.
9
Artificial metalloenzymes for enantioselective catalysis.
Curr Opin Chem Biol. 2014 Apr;19:135-43. doi: 10.1016/j.cbpa.2014.02.002. Epub 2014 Mar 5.
10
Recent achievments in the design and engineering of artificial metalloenzymes.
Curr Opin Chem Biol. 2014 Apr;19:99-106. doi: 10.1016/j.cbpa.2014.01.018. Epub 2014 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验