Department of Chemistry, University of Basel, Basel CH-4058, Switzerland.
Department of Chemistry, University of Basel, Basel CH-4058, Switzerland.
Curr Opin Chem Biol. 2024 Aug;81:102508. doi: 10.1016/j.cbpa.2024.102508. Epub 2024 Aug 3.
Embedding a catalytically competent transition metal into a protein scaffold affords an artificial metalloenzyme (ArM). Such hybrid catalysts display features that are reminiscent of both homogeneous and enzymatic catalysts. Pioneered by Whitesides and Kaiser in the late 1970s, this field of ArMs has expanded over the past two decades, marked by ever-increasing diversity in reaction types, cofactors, and protein scaffolds. Recent noteworthy developments include i) the use of earth-abundant metal cofactors, ii) concurrent cascade reactions, iii) synergistic catalysis, and iv) in vivo catalysis. Thanks to significant progress in computational protein design, ArMs based on de novo-designed proteins and tailored chimeric proteins promise a bright future for this exciting field.
将催化活性的过渡金属嵌入蛋白质支架中可得到人工金属酶(ArM)。这种杂化催化剂具有均相催化剂和酶催化剂的特征。该领域由 Whitesides 和 Kaiser 在 20 世纪 70 年代末开创,在过去的二十年中得到了扩展,其特点是反应类型、辅助因子和蛋白质支架的多样性不断增加。最近的显著进展包括:i)使用丰富的地球金属辅助因子,ii)同时级联反应,iii)协同催化,和 iv)体内催化。由于计算蛋白质设计方面的重大进展,基于从头设计的蛋白质和定制嵌合蛋白质的 ArM 为这个令人兴奋的领域带来了光明的前景。