Verma Ravi Kumar, Prabh Neel Duti, Sankararamakrishnan Ramasubbu
Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Centre of Excellence for Chemical Biology, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Biochim Biophys Acta. 2015 Jun;1848(6):1436-49. doi: 10.1016/j.bbamem.2015.03.013. Epub 2015 Mar 19.
The superfamily of major intrinsic proteins (MIPs) includes aquaporin (AQP) and aquaglyceroporin (AQGP) and it is involved in the transport of water and neutral solutes across the membrane. Diverse MIP sequences adopt a unique hour-glass fold with six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). Loop E contains one of the two conserved NPA motifs and contributes two residues to the aromatic/arginine selectivity filter. Function and regulation of majority of MIP channels are not yet characterized. We have analyzed the loop E region of 1468 MIP sequences and their structural models from six different organism groups. They can be phylogenetically clustered into AQGPs, AQPs, plant MIPs and other MIPs. The LE half-helix in all AQGPs contains an intra-helical salt-bridge and helix-breaking residues Gly/Pro within the same helical turn. All non-AQGPs lack this salt-bridge but have the helix destabilizing Gly and/or Pro in the same positions. However, the segment connecting LE half-helix and TM6 is longer by 10-15 residues in AQGPs compared to all non-AQGPs. We speculate that this longer loop in AQGPs and the LE half-helix of non-AQGPs will be relatively more flexible and this could be functionally important. Molecular dynamics simulations on glycerol-specific GlpF, water-transporting AQP1, its mutant and a fungal AQP channel confirm these predictions. Thus two distinct regions of loop E, one in AQGPs and the other in non-AQGPs, seem to be capable of modulating the transport. These regions can also act in conjunction with other extracellular residues/segments to regulate MIP channel transport.
主要内在蛋白(MIP)超家族包括水通道蛋白(AQP)和水甘油通道蛋白(AQGP),它参与水和中性溶质跨膜运输。多样的MIP序列呈现独特的沙漏状折叠结构,有六个跨膜螺旋(TM1至TM6)和两个半螺旋(LB和LE)。环E包含两个保守的NPA基序之一,并为芳香族/精氨酸选择性过滤器贡献两个残基。大多数MIP通道的功能和调节尚未明确。我们分析了来自六个不同生物组的1468个MIP序列及其结构模型的环E区域。它们在系统发育上可聚类为AQGP、AQP、植物MIP和其他MIP。所有AQGP中的LE半螺旋在同一螺旋圈内含有一个螺旋内盐桥和破坏螺旋的残基甘氨酸/脯氨酸。所有非AQGP都缺乏这种盐桥,但在相同位置有使螺旋不稳定的甘氨酸和/或脯氨酸。然而,与所有非AQGP相比,AQGP中连接LE半螺旋和TM6的片段长10 - 15个残基。我们推测AQGP中这个较长的环和非AQGP的LE半螺旋相对更灵活,这可能在功能上很重要。对甘油特异性GlpF、水运输型AQP1、其突变体和真菌AQP通道的分子动力学模拟证实了这些预测。因此,环E的两个不同区域,一个在AQGP中,另一个在非AQGP中,似乎能够调节运输。这些区域也可以与其他细胞外残基/片段协同作用来调节MIP通道运输。