Louisnard O, Cogné C, Labouret S, Montes-Quiroz W, Peczalski R, Baillon F, Espitalier F
Centre RAPSODEE, UMR CNRS 5302, Université de Toulouse, Ecole des Mines d'Albi, 81013 Albi Cedex 09, France.
Université Claude Bernard Lyon 1; LAGEP, UMR CNRS 5007, Campus de la Doua, Bt. CPE, 69616 Villeurbanne, France.
Ultrason Sonochem. 2015 Sep;26:186-192. doi: 10.1016/j.ultsonch.2015.03.008. Epub 2015 Mar 13.
The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial.
在用于冷冻干燥的小瓶中计算声场和空化泡的位置,小瓶由振动板从底部进行超声处理。计算依赖于空化液体中声音传播的非线性模型[路易斯纳德,《超声化学》,19,(2012)56 - 65]。小瓶中的振动幅度和液位均作为参数变化。对于低液位,需要一个阈值幅度才能在小瓶底部形成空化区。随着振动幅度增加,泡场略有增厚但仍位于小瓶底部,并且声场饱和,这是线性声学无法捕捉到的。另一方面,增加液位可能会促进在自由液面下方几厘米处的玻璃壁附近形成二次泡结构。这些预测表明,即使在如此小的体积中也可能出现相当复杂的声场和泡结构。由于声场和泡场在冷冻步骤中控制着冰核形成,冷冻产品中最终晶体的尺寸分布可能关键取决于小瓶中的液位。