†Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China.
‡Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China.
ACS Nano. 2015 Apr 28;9(4):4017-25. doi: 10.1021/acsnano.5b00081. Epub 2015 Mar 31.
MoS2 on polycrystalline metal substrates emerges as an intriguing growth system compared to that on insulating substrates due to its direct application as an electrocatalyst in hydrogen evolution. However, the growth is still indistinct with regard to the effects of the inevitably evolved facets. Herein, we demonstrate for the first time that the crystallography of Au foil substrates can mediate a strong effect on the growth of monolayer MoS2, where large-domain single-crystal MoS2 triangles are more preferentially evolved on Au(100) and Au(110) facets than on Au(111) at relative high growth temperatures (>680 °C). Intriguingly, this substrate effect can be weakened at a low growth temperature (∼530 °C), reflected with uniform distributions of domain size and nucleation density among the different facets. The preferential nucleation and growth on some specific Au facets are explained from the facet-dependent binding energy of MoS2 according to density functional theory calculations. In brief, this work should shed light on the effect of substrate crystallography on the synthesis of monolayer MoS2, thus paving the way for achieving batch-produced, large-domain or domain size-tunable growth through an appropriate selection of the growth substrate.
与在绝缘衬底上相比,多晶金属衬底上的 MoS2 的生长是一种很有趣的体系,因为它可以直接作为析氢反应的电催化剂。然而,对于不可避免出现的晶面的影响,其生长仍然不明确。在此,我们首次证明了金箔衬底的晶体学可以对单层 MoS2 的生长产生强烈的影响,在相对较高的生长温度(>680°C)下,大域单晶 MoS2 三角形更倾向于在 Au(100)和 Au(110)晶面上形成,而不是在 Au(111)晶面上形成。有趣的是,这种衬底效应可以在低温(约 530°C)下减弱,不同晶面上的畴尺寸和形核密度均匀分布。根据密度泛函理论计算,从 MoS2 的晶面依赖结合能的角度解释了在某些特定的 Au 晶面上的优先形核和生长。总之,这项工作应该有助于了解衬底晶体学对单层 MoS2 合成的影响,从而为通过适当选择生长衬底实现批量生产、大域或域尺寸可调的生长铺平道路。