Binda Claudia, Robinson Reeder M, Martin Del Campo Julia S, Keul Nicholas D, Rodriguez Pedro J, Robinson Howard H, Mattevi Andrea, Sobrado Pablo
From the Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy.
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and.
J Biol Chem. 2015 May 15;290(20):12676-88. doi: 10.1074/jbc.M114.629485. Epub 2015 Mar 23.
N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This "occluded" structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed.
N-羟基化单加氧酶参与含铁螯合异羟肟酸的铁载体的生物合成,这些铁载体在微生物致病性中发挥作用。这些黄素酶催化胺的NADPH和氧依赖性羟基化反应,例如赖氨酸和鸟氨酸侧链上的胺。在这项工作中,我们报告了诺卡氏菌赖氨酸单加氧酶(NbtG)的生化和结构特征,它具有与分枝杆菌同源物相似的生化特性。NbtG对d-赖氨酸也有活性,尽管它对l-赖氨酸的亲和力更高。与鸟氨酸单加氧酶PvdA、SidA和KtzI不同,NbtG可以使用NADH和NADPH,并且高度解偶联,产生的超氧化物和过氧化氢比羟基化赖氨酸更多。以2.4 Å分辨率解析的NbtG晶体结构揭示了一种意想不到的蛋白质构象,NAD(P)H结构域相对于黄素腺嘌呤二核苷酸(FAD)结构域旋转了30°,这使得烟酰胺辅因子无法结合。这种“封闭”结构可能解释了NbtG的生化特性,特别是关于C4a-氢过氧黄素中间体的大量解偶联和有限稳定性。讨论了这些发现的生物学意义。