Suppr超能文献

赖氨酸单加氧酶NbtG中前所未有的NADPH结构域构象为深入了解氧消耗与底物羟基化解偶联提供了线索。

An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.

作者信息

Binda Claudia, Robinson Reeder M, Martin Del Campo Julia S, Keul Nicholas D, Rodriguez Pedro J, Robinson Howard H, Mattevi Andrea, Sobrado Pablo

机构信息

From the Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy.

Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and.

出版信息

J Biol Chem. 2015 May 15;290(20):12676-88. doi: 10.1074/jbc.M114.629485. Epub 2015 Mar 23.

Abstract

N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This "occluded" structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed.

摘要

N-羟基化单加氧酶参与含铁螯合异羟肟酸的铁载体的生物合成,这些铁载体在微生物致病性中发挥作用。这些黄素酶催化胺的NADPH和氧依赖性羟基化反应,例如赖氨酸和鸟氨酸侧链上的胺。在这项工作中,我们报告了诺卡氏菌赖氨酸单加氧酶(NbtG)的生化和结构特征,它具有与分枝杆菌同源物相似的生化特性。NbtG对d-赖氨酸也有活性,尽管它对l-赖氨酸的亲和力更高。与鸟氨酸单加氧酶PvdA、SidA和KtzI不同,NbtG可以使用NADH和NADPH,并且高度解偶联,产生的超氧化物和过氧化氢比羟基化赖氨酸更多。以2.4 Å分辨率解析的NbtG晶体结构揭示了一种意想不到的蛋白质构象,NAD(P)H结构域相对于黄素腺嘌呤二核苷酸(FAD)结构域旋转了30°,这使得烟酰胺辅因子无法结合。这种“封闭”结构可能解释了NbtG的生化特性,特别是关于C4a-氢过氧黄素中间体的大量解偶联和有限稳定性。讨论了这些发现的生物学意义。

相似文献

2
Identification of structural determinants of NAD(P)H selectivity and lysine binding in lysine N(6)-monooxygenase.
Arch Biochem Biophys. 2016 Sep 15;606:180-8. doi: 10.1016/j.abb.2016.08.004. Epub 2016 Aug 5.
3
The Structure of the Antibiotic Deactivating, N-hydroxylating Rifampicin Monooxygenase.
J Biol Chem. 2016 Oct 7;291(41):21553-21562. doi: 10.1074/jbc.M116.745315. Epub 2016 Aug 24.
6
Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
Biochim Biophys Acta. 2014 Apr;1844(4):778-84. doi: 10.1016/j.bbapap.2014.02.005. Epub 2014 Feb 15.
7
Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus.
PLoS One. 2021 Mar 30;16(3):e0248385. doi: 10.1371/journal.pone.0248385. eCollection 2021.
8
Trapping conformational states of a flavin-dependent -monooxygenase reveals protein and flavin dynamics.
J Biol Chem. 2020 Sep 18;295(38):13239-13249. doi: 10.1074/jbc.RA120.014750. Epub 2020 Jul 28.
9
Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
J Biol Chem. 2011 Sep 9;286(36):31789-98. doi: 10.1074/jbc.M111.265876. Epub 2011 Jul 13.

引用本文的文献

2
Characterization of the Flavin-Dependent Monooxygenase Involved in the Biosynthesis of the Nocardiosis-Associated Polyketide†.
Biochemistry. 2024 Nov 5;63(21):2868-2877. doi: 10.1021/acs.biochem.4c00480. Epub 2024 Oct 21.
5
Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus.
PLoS One. 2021 Mar 30;16(3):e0248385. doi: 10.1371/journal.pone.0248385. eCollection 2021.
6
Structure and function of a flavin-dependent S-monooxygenase from garlic ().
J Biol Chem. 2020 Aug 7;295(32):11042-11055. doi: 10.1074/jbc.RA120.014484. Epub 2020 Jun 11.
7
Flavin-dependent N-hydroxylating enzymes: distribution and application.
Appl Microbiol Biotechnol. 2020 Aug;104(15):6481-6499. doi: 10.1007/s00253-020-10705-w. Epub 2020 Jun 5.
9
Side-Chain Pruning Has Limited Impact on Substrate Preference in a Promiscuous Enzyme.
ACS Catal. 2018 Dec 7;8(12):11648-11656. doi: 10.1021/acscatal.8b03793. Epub 2018 Oct 30.
10
Flavin oxidation in flavin-dependent N-monooxygenases.
Protein Sci. 2019 Jan;28(1):90-99. doi: 10.1002/pro.3487. Epub 2018 Sep 25.

本文引用的文献

1
Crystallographic evidence of drastic conformational changes in the active site of a flavin-dependent N-hydroxylase.
Biochemistry. 2014 Sep 30;53(38):6063-77. doi: 10.1021/bi500655q. Epub 2014 Sep 16.
2
Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis.
Arch Biochem Biophys. 2014 May 15;550-551:58-66. doi: 10.1016/j.abb.2014.04.006. Epub 2014 Apr 24.
3
Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
Biochim Biophys Acta. 2014 Apr;1844(4):778-84. doi: 10.1016/j.bbapap.2014.02.005. Epub 2014 Feb 15.
4
Identification of the NAD(P)H binding site of eukaryotic UDP-galactopyranose mutase.
J Am Chem Soc. 2012 Oct 31;134(43):18132-8. doi: 10.1021/ja308188z. Epub 2012 Oct 19.
6
Linking crystallographic model and data quality.
Science. 2012 May 25;336(6084):1030-3. doi: 10.1126/science.1218231.
7
Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.
Biochim Biophys Acta. 2012 Jun;1824(6):850-7. doi: 10.1016/j.bbapap.2012.03.004. Epub 2012 Mar 27.
8
Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases.
Bioorg Chem. 2011 Dec;39(5-6):171-7. doi: 10.1016/j.bioorg.2011.07.006. Epub 2011 Aug 5.
10
Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
J Biol Chem. 2011 Sep 9;286(36):31789-98. doi: 10.1074/jbc.M111.265876. Epub 2011 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验