Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nat Commun. 2015 Mar 25;6:6401. doi: 10.1038/ncomms7401.
The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, because of the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, for example, Na₀.₄₄MnO₂, were proposed, few negative electrode materials, for example, activated carbon and NaTi₂(PO₄)₃, are available. Here we show that Ti-substituted Na₀.₄₄MnO₂ (Na₀.₄₄[Mn₁-xTix]O₂) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na₀.₄₄[Mn₁-xTix]O₂ is a promising negative electrode material for aqueous sodium-ion batteries.
水系钠离子电池因其钠资源丰富、水系电解液廉价而成为大规模储能的一种安全且低成本的解决方案。尽管已经提出了几种正极材料,例如 Na₀.₄₄MnO₂,但可用的负极材料却很少,例如活性炭和 NaTi₂(PO₄)₃。在这里,我们展示了具有隧道结构的 Ti 取代 Na₀.₄₄MnO₂(Na₀.₄₄[Mn₁-xTix]O₂)可用作水系钠离子电池的负极材料。即使不对水溶液进行除氧的特殊处理,该材料也表现出优异的循环稳定性。利用球差校正电子显微镜和第一性原理计算的原子尺度特性来准确识别 Ti 取代位置和储钠机制。Ti 取代可调节电荷有序特性和反应途径,显著平滑放电/充电曲线并降低存储电压。基础理解和实际演示都表明,Na₀.₄₄[Mn₁-xTix]O₂是水系钠离子电池的一种很有前途的负极材料。