Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Nat Commun. 2013;4:1481. doi: 10.1038/ncomms2513.
Liquid electrolyte plays a key role in commercial lithium-ion batteries to allow conduction of lithium-ion between cathode and anode. Traditionally, taking into account the ionic conductivity, viscosity and dissolubility of lithium salt, the salt concentration in liquid electrolytes is typically less than 1.2 mol l(-1). Here we show a new class of 'Solvent-in-Salt' electrolyte with ultrahigh salt concentration and high lithium-ion transference number (0.73), in which salt holds a dominant position in the lithium-ion transport system. It remarkably enhances cyclic and safety performance of next-generation high-energy rechargeable lithium batteries via an effective suppression of lithium dendrite growth and shape change in the metallic lithium anode. Moreover, when used in lithium-sulphur battery, the advantage of this electrolyte is further demonstrated that lithium polysulphide dissolution is inhibited, thus overcoming one of today's most challenging technological hurdles, the 'polysulphide shuttle phenomenon'. Consequently, a coulombic efficiency nearing 100% and long cycling stability are achieved.
液态电解质在商业锂离子电池中起着关键作用,可允许锂离子在阴极和阳极之间传导。传统上,考虑到离子电导率、粘度和锂盐的溶解性,液态电解质中的盐浓度通常小于 1.2 mol·L(-1)。在这里,我们展示了一类新型的“盐在溶剂中”电解质,具有超高的盐浓度和高锂离子迁移数(0.73),其中盐在锂离子传输系统中占据主导地位。它通过有效抑制金属锂阳极中锂枝晶的生长和形状变化,显著提高了下一代高能量可再充电锂电池的循环和安全性能。此外,当用于锂硫电池时,该电解质的优势进一步得到证明,即抑制了多硫化物的溶解,从而克服了当今最具挑战性的技术障碍之一,即“多硫化物穿梭现象”。因此,实现了接近 100%的库仑效率和长循环稳定性。