IEEE Trans Neural Netw Learn Syst. 2016 Jan;27(1):62-76. doi: 10.1109/TNNLS.2015.2411629. Epub 2015 Mar 20.
Multistep-ahead forecasts can either be produced recursively by iterating a one-step-ahead time series model or directly by estimating a separate model for each forecast horizon. In addition, there are other strategies; some of them combine aspects of both aforementioned concepts. In this paper, we present a comprehensive investigation into the bias and variance behavior of multistep-ahead forecasting strategies. We provide a detailed review of the different multistep-ahead strategies. Subsequently, we perform a theoretical study that derives the bias and variance for a number of forecasting strategies. Finally, we conduct a Monte Carlo experimental study that compares and evaluates the bias and variance performance of the different strategies. From the theoretical and the simulation studies, we analyze the effect of different factors, such as the forecast horizon and the time series length, on the bias and variance components, and on the different multistep-ahead strategies. Several lessons are learned, and recommendations are given concerning the advantages, disadvantages, and best conditions of use of each strategy.
多步预测可以通过迭代一步预测时间序列模型递归生成,也可以直接为每个预测时段估计单独的模型。此外,还有其他策略,其中一些策略结合了上述两种概念的某些方面。本文全面研究了多步预测策略的偏差和方差行为。我们详细回顾了不同的多步预测策略。随后,我们进行了一项理论研究,为许多预测策略推导出偏差和方差。最后,我们进行了蒙特卡罗实验研究,比较和评估了不同策略的偏差和方差性能。通过理论和仿真研究,我们分析了不同因素(如预测时段和时间序列长度)对偏差和方差分量以及不同多步预测策略的影响。得出了一些结论,并针对每种策略的优缺点以及最佳使用条件提出了建议。